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Abstract

With the introduction of the Beckman XL-I/A in the early 1990s, digital data acquisi-

tion from the analytical ultracentrifuge has made it possible to readily analyze sedi-

mentation data with a PC. UltraScan,1 one of the several data analysis software

packages available for such analysis, is a comprehensive, multi-platform software

package designed to not only address the tasks associated with the interpretation of

analytical ultracentrifugation (AUC) experiments, but also to provide guidance with

the design of sedimentation experiments and to address data management challenges

arising in multi-user facilities. The availability of data in digital format has led to a

wealth of AUC data, which demand new approaches for dealing with the large amounts

of data generated. To address this challenge, UltraScan now includes a laboratory

information management system (LIMS) which is based on a relational database. In

addition, UltraScan integrates many routines for designing, analyzing, interpreting,

and displaying sedimentation equilibrium and velocity experiments in a user-friendly

graphical interface to make sophisticated analysis methods approachable for a wide

audience, including new and less-experienced users. In this publication, an overview

of the design philosophy of the software and its algorithms is presented, and the vari-

ous modules, methods, and their applications are discussed. Examples for each method

are shown, and a guide for the experimental design and implementation is given.

1 Overview

The UltraScan software package is the result of a collaborative effort extending over

more than a decade now with many contributors.2 Over the years, many modules have

been added to the software, increasing functionality and generality. This publication
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offers an overview of the capabilities of the current state of the software. The software

has been created with the intent to provide a convenient and high-performance data

analysis environment for AUC experiments. The software is programed in the plat-

form independent C++/Qt language, and graphical versions for Linux, Unix,

Windows, and Mac OS-X are available for free download. 

The software addresses multiple issues related to the analysis: starting with the

experimental design, the software offers modules that aid in the optimal design of

the experiment. Once the data have been acquired, the data are edited with editing

modules designed for different optical systems and centerpiece geometries and con-

verted into a binary format suitable for rapid loading and analysis by a series of

experimental analysis procedures. Sedimentation velocity analysis can be performed

with several methods: determination of model-independent G(s) distributions and

partial concentrations can be accomplished with the van Holde–Weischet method,

for samples with only a few discrete species, direct boundary fitting using finite

element solutions of Lamm equation models can be used to determine s, D, molec-

ular weight, frictional coefficients, and partial concentrations. The second moment

analysis provides weight-average sedimentation coefficients and offers useful diag-

nostics for sedimentation experiments. Sedimentation equilibrium experiments can

be analyzed with a global nonlinear least-squares regression analysis. Fitting statis-

tics can be ascertained through either a bootstrap or Monte Carlo analysis. UltraScan

includes a Beowulf interface, which allows this analysis to also be performed on a

parallel Linux cluster to reduce computing time. Multi-wavelength analysis is com-

plemented by a global extinction fitter suitable for determining intrinsic extinction

coefficient distributions. Data analysis results can be directly exported in html for-

mat to a webserver, such that experimental results are available on the Internet. 

To assist with data management tasks, an issue of concern especially for facilities

with multiple machines and multiple investigators, an external relational database is

incorporated into UltraScan. The database component of UltraScan has both a C++

implementation for direct database access from the software as well as a PHP inter-

face for web-based access. In the relational database it is possible to link experimen-

tal data with associated information and not only store the data itself, but also the

links to associated data. Examples for information that can be logically connected to

the experimental data include: information describing details and the context of the

experiment, the optical system used, the investigator, the cell type, the rotor, and the

centerpiece geometry, sequence information of biopolymers (for purposes of estimat-

ing partial specific volume, molecular weight, extinction coefficients), buffer compo-

sition (for predicting hydrodynamic corrections) as well as data analysis results. PHP

modules regenerate analysis reports on the fly by retrieving the relevant information

through the Internet. An array of utility functions facilitates archiving of experimen-

tal data, calculation of ancillary constants from buffer composition and primary pro-

tein and nucleic acid sequences, molecular modeling, and common file operations.

2 Organization

The UltraScan software is organized into multiple modules that can be executed sep-

arately or simultaneously. Each module is a separate binary file linked against the

AQ:1

LSD_AUC_Chapter 11.qxd  6/4/2005  12:58 PM  Page 211



212 Chapter 11

main UltraScan library, which is dynamically loaded. This organization optimizes

stability and memory needs, especially in a multi-user environment. Where appro-

priate, the code is multi-threaded to afford additional performance in a multi-proces-

sor environment. The software modules interface directly with several external

programs. Database functionality is provided by MySQL, an Internet-enabled rela-

tional database. Context-specific help files, documentation, and data reports have

been written in html and are accessed with an external browser such as Explorer,

Netscape, or Mozilla. Data archives are generated with the public domain tar and

gzip utilities to maintain cross-platform compatibility.3 Web-based access is pro-

vided through the Apache webserver,4 and a PHP5 interface to the MySQL database.6

Below, each module is discussed separately.

3 Modules

3.1 Experimental Design and Simulation Modules

An important part of AUC is the appropriate design of the run conditions, in partic-

ular the loading concentration, the rotor speed and the duration of the experiment, as

well as wavelength selection. Suboptimal rotor speeds, incorrect run times, and scan

times can lead to reduced information content of the resulting data. Incorrect sample

concentration may lead to underrepresentation of a reversibly self-associating

oligomeric species, while an incorrect wavelength selection can lead a noisy or non-

linear signal. Often, some information is known about the protein from Sodium

dodecyl sulfate (SDS) gel electrophoresis, mass spectrometry, gel filtration, or

sequencing before analytical ultracentrifuge experiments are performed. Such infor-

mation can be exploited to optimize the design of the experiment. A good estimate

of the monomer molecular weight as well as an approximation of the molecular

shape can then be used to predict the sedimentation and diffusion coefficient for the

molecule. A modeling module facilitates the prediction of these coefficients from

molecular weight, partial specific volume, buffer conditions, and shape model.

Coefficients can be predicted for a sphere as well as by specifying the axial ratio for

an oblate or prolate ellipsoids, or a long rod model (Figure 1). 

Once sedimentation and diffusion coefficients are available, finite element solu-

tions of the Lamm equation7 are used to simulate experimental conditions. From

these simulations, optimized experimental parameters can be derived. For velocity

experiments, the simulations are used to predict the highest possible speed compat-

ible with the scan speed, which is dependent on the number of cells to be scanned,

the optical system, and the number of desired scans. For equilibrium experiments,

the program will predict appropriate speeds based on the reduced molecular weight

σ of the samples. Speeds appropriate for equilibrium experiments can be obtained

by substituting the appropriate values for σ in Equation (1):

rpm � �� (1)

where R is the gas constant, T the temperature in K, M the molecular weight, ρ the

density of the buffer, ν� the partial specific volume and σ is defined by

2RTσ
��
M(1�ν�ρ)

30
�
π
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σ � (2)

It is recommended to perform equilibrium experiments with 4–5 speeds ranging in

σ values between 1 and 4 for sample loading concentrations of 0.3, 0.5, and 0.7 OD.

These conditions provide sufficient curvature and variation in the equilibrium gradi-

ent, exploit the entire linear range of the absorbance spectrum and provide sufficient

variability in the gradient to improve global-fitting statistics. For reversibly self-

associating systems, a selection of multiple wavelengths can effectively enhance the

concentration range covered by the experiment, so that multiple oligomers are ade-

quately represented in the signal. Next, finite element simulations are used to model

the approach to equilibrium. The length of time required to achieve the equilibrium

condition is given by satisfying the following equality:

k � �
n

i�1
�L(s, D, ri, t, Cl, ω)�Ca exp� ��

2

(3)

where k is a user-selectable constant determining the residual error (typically less

than the error resulting from experimental noise), n the number of radial discretiza-

tion steps, L(s, D, ri, t, Cl, ω) is the Lamm equation solution, ri the radius at the ith

position, Cl the loading concentration, t the time, and Ca, ra are the concentration and

the radius at a reference point in the cell, respectively. Mass conservation is guaran-

teed by the relationship

Mω2(1�ν�ρ)(r i
2
�ra

2)
���

2RT

Mω 2(1�ν�ρ)
��

2RT

Figure 1 Module for the modeling of molecular parameters based on molecular weight, axial
ratio, hypothetic molecular shape, partial specific volume, and buffer conditions.
Hydrodynamic corrections can be imported from predefined buffer files and the
partial specific volume of peptides can be estimated from the peptide sequence
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Cl(rb�rm) � 	rb

rm

Ca exp� � dr (4)

where rm is the meniscus position and rb the position at the bottom of the cell. Once

the equilibrium condition in Equation (3) has been satisfied, the resulting concen-

tration distribution is used to initialize the next higher speed and the process is

repeated until all speeds have been simulated. The time required to reach equilib-

rium for each speed is recorded and can be used to program the analytical ultra-

centrifuge (allowing for additional time required to perform the actual scanning, as

well as a separate scan spaced 4–6 h apart to verify that equilibrium has been

reached).

3.2 Editing Modules

The process of editing sedimentation data consists of eliminating noisy data regions

and to determine meniscus position and in the case of velocity data, determining a

baseline and plateau estimates for each scan, and writing all data to a binary copy of

the original data, which remain unchanged during editing. This binary representation

can be loaded by any UltraScan analysis module, eliminating the need to re-edit

experimental data for each analysis method individually. Another advantage of the

binary data format is the significant increase in reading speed. 

During editing, the software will extract all salient information from the file

header, sort all scans according to scan number, cell, centerpiece channel, and wave-

length and create a separate binary representation of all scans belonging to the same

cell, centerpiece, and wavelength. A separate binary run information file is created

to save the rotor speed, time, temperature, plateau, data range, wavelength, and the

ω 2t integral of each scan. Centerpiece geometry, rotor type, optical system, menis-

cus, average temperature, as well as rotor acceleration corrections are calculated and

saved in this structure as well. If the database module is used, this file also includes

the date of the experiment, the database links for the buffer composition file, as well

as the links for the peptide and nucleic acid sequences from each channel, and the

database name and address used for the experiment.

A special process is required for editing interference velocity data. Such data are

often affected by several systematic imperfections, such as shifting baselines, inte-

gral fringe offsets, and time-independent noise. The following algorithm is

employed to correct these artifacts: initially, all scans are aligned along the air-to-air

region. Next, scans are shifted by integral fringe numbers until the numerical inte-

gral of each successive scan produces a monotonically decreasing function. In order

to correct the baseline shift (‘breathing’), often found in interference data, this inte-

gral function is then fitted to a polynomial. Each scan’s residual of this fit is a reflec-

tion of the baseline offset variation in each scan (Figure 2). Subtracting the residuals

from each corresponding scan corrects the variations in the baseline offsets. Finally,

a provision is made to subtract baseline scans from each scan to correct for time-

independent noise caused by heterogeneity in the refractive index of cell windows,

which can be substantial for low concentration samples.

Mω 2(1�ν�ρ)(r 2
�ra

2)
���

2RT
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3.3 Velocity Analysis Modules

During sedimentation velocity experiments, the molecules under investigation are

subject to two transport processes, sedimentation and diffusion. These processes

depend both on molecular weight and the frictional properties of a molecule. The

sedimentation coefficient is directly proportional to the molecular weight, and

inversely proportional to the frictional coefficient. Diffusion is inversely propor-

tional to the frictional coefficient. For simple systems of one or two components it

is therefore possible to obtain both sedimentation and diffusion coefficients, which

provide information about molecular weight and shape. However, if multiple com-

ponents are present, the individual signal strengths from diffusion and sedimentation

from each component are reduced, and often not sufficiently resolvable to identify

with necessary certainty the shape and molecular weight contributions. In such cases

it is still possible to reliably define a sedimentation coefficient distribution, but the

corresponding diffusion coefficient distribution may remain hidden.

UltraScan offers methods for the analysis of either situation. A system with just a

few noninteracting components can often be well described by whole boundary

modeling. UltraScan uses finite element solutions of the Lamm equation7 to perform

this modeling. The finite element solutions are fitted with a nonlinear least-squares

fitting algorithm to the concentration distributions from the experimental scans to

obtain sedimentation coefficients, diffusion coefficients, partial concentrations,

association constants for reversibly self-associating systems, as well as meniscus

position and concentration dependency parameters. It is also possible to account for

optical artifacts such as baseline drift and sloping plateaus in the model. An exam-

ple for a fit of a noninteracting two-component system is shown in Figure 3. 

Most nonlinear least-squares fitting algorithms rely on steepest descent calculations

to find a set of optimal parameters that minimize the χ2 condition. The calculation of

Figure 2 Fringe integrals of 400 interference scans showing the variation in baseline off-
sets fitted to a polynomial function. The frequency of the fluctuation remains rela-
tively constant over time suggesting a systematic cause for this fluctuation.
Subtracting the residuals of this fit from the scans corrects the baseline offsets of
the scans
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the steepest descent direction requires the calculation of a Jacobian matrix, which con-

tains the elements of partial derivatives of the solution with respect to the estimated

parameters. There exist numerous approaches to obtain the derivatives. An analytical

evaluation of the derivatives provides the most accurate result, and facilitates conver-

gence of the least-squares optimization. 

However, for finite element solutions of the Lamm equation an analytical evalua-

tion of the partial derivatives of all parameters is not available, and alternative meth-

ods have to be used. The finite element fitting modules offer two nonlinear

least-squares fitting algorithms for whole boundary fitting of velocity experiments.

The first method is based on an approach developed by Ralston and Jennrich8 which

uses first-order tangent approximations to estimate the partial derivatives. While this

approach works well for most cases, for complex cases with many floating parame-

ters the inherent error in the tangent approximation approach adversely affects con-

vergence properties, and convergence can stall in a local minimum. 

Better convergence properties can be obtained with the second optimization

method, which is based on automatic differentiation.9 In this approach, a tape of

chain rule operations is recorded from the evaluation of the finite element solution,

which is used to calculate the entries of the Jacobian matrix using the ADOLC C++

library10 for automatic differentiation. The accuracy of the derivatives evaluated by

automatic differentiation is equivalent to analytical solutions. A drawback to this

approach is the large storage requirement for the tape, which can slow down com-

putation on smaller computers. 

For all systems, including those that are not well described by just a few discrete

components, the van Holde–Weischet analysis11 offers a model-independent graphi-

cal transformation of the data that results in diffusion-corrected sedimentation coeffi-

cient distributions. This method relies on the realization that while sedimentation is a

transport process proportional to the first power of time, diffusion is a transport

process proportional to the square-root power of time. In the limit of infinite time the

effect on transport by diffusion is negligible compared to transport by sedimentation.

Figure 3 Finite element fit of a sedimentation velocity experiment containing a two-compo-
nent, noninteracting system. The continuous black lines show the finite element
solution, the grey circles represent the experimental observations
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Extrapolation to infinite time can therefore provide diffusion-corrected sedimentation

coefficient distributions. In this approach, apparent sedimentation coefficients are cal-

culated from a fixed number of boundary fractions at each scan. Corresponding

boundary fractions are then extrapolated to infinite time in a plot of apparent sedi-

mentation coefficients vs. the inverse square root of time of the scan (Figure 4).

Special care has to be taken to account for boundary effects at the meniscus and

the bottom of the cell, as well as differential radial dilution rates for different com-

ponents in the system. These effects are taken into consideration in the enhanced van

Holde–Weischet algorithm that is implemented in UltraScan. The details of this

algorithm are described in ref. 12. The enhanced van Holde–Weischet analysis pro-

vides sedimentation coefficient distributions that can be displayed both as integral

distribution plots G(s) and as differential distributions g(s) as shown in Figure 5.

Given suitable estimates for the partial specific volume and the frictional ratio f/f0,

both distributions can also be transformed into molecular weight distributions.

Weight-average sedimentation coefficients are also calculated from the sedimenta-

tion coefficient distributions. 

An alternative method for obtaining weight-average sedimentation coefficients is

provided by the second moment analysis. It provides weight-average sedimentation

coefficients for each individual scan. However, only scans with a stable plateau and

clear meniscus can provide reliable estimates of second moment weight-average

sedimentation coefficients.

3.4 Equilibrium Analysis Module

Sedimentation equilibrium experiments always should include multiple equilibrium

scans taken at different rotor speeds, different loading concentrations, and multiple

wavelengths. Each individual scan contains a unique distribution of concentration

Figure 4 van Holde–Weischet analysis of a sedimentation velocity data for a heterogeneous
system containing multiple degradation products of a protease. Extrapolations to
infinite time are made for increasing boundary fractions (bottom to top) and from
early scans to late scans (right to left)

LSD_AUC_Chapter 11.qxd  6/4/2005  12:58 PM  Page 217



218 Chapter 11

observations that reflect the composition of the sample. If the correct model is cho-

sen for a global analysis approach, each observation has to satisfy the same global

parameters such as molecular weight, extinction coefficients, and association con-

stants in the model function. Furthermore, scans taken at different wavelengths

exploit the varying extinction properties of the sample and allow analysis of a sam-

ple over a larger range of loading concentrations. 

In a reversibly self-associating system a change in the loading concentration will

change the ratio of larger oligomers vs. smaller oligomers or monomeric forms of

the sample, thereby enhancing the signal of one species compared to another. A

global analysis approach is essential for a reliable interpretation of data from multi-

component systems. Multiple experiments can be simultaneously analyzed by

UltraScan through nonlinear least-squares fitting to a preset or user-defined global

model as proposed in ref. 13. All models available in UltraScan are based on three

basic forms:

(1) A noninteracting system:

C(r) � �
k

i�1

exp� � � c (5)

(2) A reversibly self-associating system:

C(r) � �
k

i�1

exp� �� c (6)

(3) A reversibly hetero-interacting system for two components A and B:

C(r) � exp� �
ln(aA)�MAω 2(1�νAµ)(r2

�r 2
ref)

����
2RT

i ln(a1)�ln�
(e

iK

l)
1
i�
,i

1��iM1ω
2(1�ν��ρ)(r2

�r 2
a)

�����

2RT

ln(ai)�Miω
2(1�ν�iρ)(r2

�r 2
a)

���
2RT

Figure 5 Integral distribution plot (G(s)) and differential distribution plot (g(s)) for van
Holde–Weischet analysis shown in Figure 4
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� exp� �

� exp� �� c (7)

where C(r) is the concentration at radius r, k the maximum number of components

or oligomer states, a the concentration of the component at the reference radius rref,

M the molecular weight, K1,i the equilibrium constant for association state i, e the

extinction coefficient, l the path length, c a baseline offset, ω the radial velocity, ν�
the partial specific volume, and ρ the density of the buffer. UltraScan does not place

any limits on the maximum number of scans that can be included in a global analy-

sis. Each scan is allowed a separate entry for ρ and c.

Parameters can be floated or kept fixed. Parameters that can be floated include the

concentrations at the reference point for each species, the association constants, the

baseline offset, and the molecular weights or the partial specific volumes. Molecular

weights, association constants, and partial specific volumes are considered global

parameters, all other parameters are local. Global parameters are constrained to be

identical for all scans described by the global model, local parameters are allowed to

vary for each scan. The concentration a at the reference point rref is fitted as the nat-

ural log of the reference concentration. This effectively constrains the fit to positive

values of the reference concentration only, avoiding spurious oscillations of the

amplitudes of exponential terms that are common when the model is overdeter-

mined. Molecular weights reported are corrected for density and partial specific vol-

ume. Equilibrium constants are displayed as association or dissociation constants,

and are reported in molar units.

3.5 Optimization

The models used for fitting of equilibrium experiments shown in Equations (5)–(7)

are nonlinear in the parameters and require iterative nonlinear least-squares fitting

approaches. For highly nonlinear problems with many parameters the likelihood of

convergence is quite dependent on the proper choice of initial parameter estimates.

The closer the initial parameter estimates are to the least-squares solution, the

greater is the likelihood that the solution will converge at the global minimum. 

UltraScan will initialize all parameter estimates with reasonable guesses to

improve the convergence properties. This is accomplished by linearizing the model

for a single ideal species and fitting the amplitudes for each scan by general linear

least squares. The molecular weight estimate is obtained by performing a line search

over the nonlinear parameter of the model. For two- or three-component models the

scans are divided into two or three equal sections and each section is fitted individ-

ually to generate an estimate for one of the components. This approach results in

parameter estimates that automatically initialize all fitting parameters to reasonable

values that facilitate a more stable convergence of the fit. 

ln�aAaBKA,B
�
e

e

A

A

e
B

Bl
���(MA�MB)ω 2(1���νA�

2

νB
��ρ(r2

�r 2
ref)

������
2RT

ln(aB)�MBω 2(1�νBρ)(r2
�r 2

ref)
����

2RT
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Parameter optimization is performed by one of the three optimization methods:

for nonlinear least-squares optimization problems, the Levenberg–Marquardt

method 1 4 ,15 ,16 and the quas i -Newton method are implemented . The

Levenberg–Marquardt method applies a scaling factor to the diagonal of the infor-

mation matrix to prevent it from becoming singular during optimization. This

approach results in a robust method that is not too sensitive to the choice of initial

guesses, and therefore useful for obtaining an initial fit.

However, for problems with many nonlinear parameters the Levenberg–Marquardt

method has a tendency to converge in a local minimum, and a second approach is

needed to find the global minimum. For cases where the solution is close to optimal

the quasi-Newton method performs best, and it can help to overcome solutions that

are trapped in a local minimum. The quasi-Newton method employs the BFGS for-

mula (named after their developers Broyden,17 Fletcher,18 Goldfarb,19 and Shanno,20)

and a line search algorithm to update an approximation to the Hessian, which is needed

to find the steepest descent direction for locating the global minimum for the least-

squares solution. Due to the complexity of the error surface, multi-variate optimiza-

tion often fails in the task of finding the global minimum solution, and the solution

can get trapped in a local minimum. To alleviate this problem, UltraScan employs an

automatic convergence algorithm that alternates between the Levenberg–Marquardt

and quasi-Newton methods until a global minimum has been found, and neither

method can improve the χ2 value of the fit any further. An example for a global equi-

librium fit for multiple speeds and loading concentrations is shown in Figure 6.

For linear least-squares problems, a nonnegatively constrained approach is used

(the NNLS algorithm by Lawson and Hanson21). A linear problem is given when the

molecular weights of each exponential term in Equation (5) are predetermined, and

only the coefficients ai of the linear combination of exponential terms have to be

found by the fitting routine:

C(r) � �
k

i�1

ai exp� � � c (8)

where the baseline offset c is simply the zeroth-order term of this linear combina-

tion. In such a fitting problem, many terms can be used to account for all Mi present

in the sample, and the range and spacing of all Mi species is provided by the user.

The nonnegatively constrained Lawson–Hanson algorithm prevents coefficients ai

from turning negative, and coefficients of terms accounting for molecular weight

species present in the system are fitted with a nonzero value, while those not present

in the sample are assigned a value of zero. Contributions of each molecular weight

species from all scans are summed to generate a molecular weight composition his-

togram which represents the relative concentration of each species in the sample. An

example for such a molecular weight distribution is shown in Figure 7.

When studying biological systems the question often arises if the presence of molec-

ular weight heterogeneity in a sample results from the presence of multiple, noninter-

acting components or from a reversibly self-associating oligomerization. UltraScan

provides two diagnostic plots for global equilibrium fits to address this question: (1) a

plot of the average molecular weight of all fitted data points vs. concentration, and (2)

a plot of the average molecular weight of all fitted data points vs. the square of the

Miω
2(1νiµ)(r2

�r 2
a)

��
2RT
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radius. These plots are useful when the data is fitted with models derived from Equation

(5) or (8). Since Equation (6) is a subset of Equation (5) or (8), reversibly self-associat-

ing systems may also be fitted with Equation (5) or (8), yielding equally good fits. 

Figure 6 Global equilibrium fit of 24 scans (six loading concentrations and four speeds).
Circles represent experimental observations, solid lines represent the fitted model.
Residuals are shown in the top panel. overlays, and the associated fitted model are
shown in the bottom panel

Figure 7 Molecular weight distribution for a simulated equilibrium experiment containing
approximately equal amounts of a 50 and 150 kDa species. The distribution was
generated by globally fitting 24 scans for multiple speeds and loading concentra-
tions with the nonnegatively constrained general least-squares fitting method by
Lawson and Hanson
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Due to mass action, for a reversible self-associating system, the ratio of oligomer

concentration over monomer concentration stays constant according to

Kl,i� (9)

Here, K1,i is the equilibrium constant for the ith association state of the monomer, M.

Therefore, all scans will follow the same trace in plot (1), regardless of loading con-

centration or rotor speed. This is shown in Figure 8(a). For a noninteracting system

the same plot will show a distribution that is not constrained by the equilibrium con-

stant, and each speed or loading concentration will assume a different distribution.

This is shown in Figure 8(c). 

However, if the average molecular weights from the self-associating system are

plotted against the square of the radius, concentrations at different radial positions

will be sufficiently different at different rotor speeds and loading concentrations, and

each scans will produce a different trace. This is illustrated in Figure 8(b). For the

[iM]
�
[M]i

Figure 8 Equilibrium diagnostic plots in UltraScan for two different simulated multi-com-
ponent systems. The first system is a reversibly self-associating monomer–trimer
system with a monomer molecular weight of 50 kDa (a), (b), and the second sys-
tem is a two ideal noninteracting species model where component one is 50 kDa
and component two is 150 kDa (c), (d). Six speeds and five loading concentrations
were simulated for both systems. Both systems were fitted with the model shown in
Equation (8) shown in (a), (c) is a plot of average molecular weight vs. concen-
tration for each scan. In graphs (b), (d) a plot of average molecular weight vs. the
square of the radius is shown. Note that all traces for a self-associating system
overlay when molecular weight is plotted against concentration, but traces over-
lay for different loading concentrations when molecular weight is plotted against
the square of the radius only for a noninteracting system. See text for a more
detailed explanation of the diagnostics provided by these plots
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noninteracting system, molecular weight distributions are not the result of mass

action, and different loading concentrations have no effect on the ratio of one species

over the other. As a result, components will equilibrate solely according to the cen-

trifugal force applied, and all scans at the same rotor speed will follow the same

trace. An example for such a case is shown in Figure 8(d). Hence, visual inspection

of plots (1) and (2) for systems fitted to a noninteracting model allows the investi-

gator readily to distinguish between noninteracting and self-associating systems.

3.6 Extinction Fitting Module

For self-associating systems and hetero-associating systems the measurement of

equilibrium experiments at different wavelengths can add important information to

the analysis. For self-associating systems, different extinction coefficients at differ-

ent wavelengths can be exploited to obtain measurements at markedly different con-

centrations. By bracketing a large concentration range in the experiment, the signal

from both monomer and oligomeric species can be enhanced. For hetero-associating

systems, the presence of chromophores at different wavelengths for each component

can provide important constraints on the fit when multiple wavelengths are fitted in

a global fit. When these constraints are included in the fit, it is important that extinc-

tion coefficients are correctly identified in the model for each wavelength and for

each component to assure internal consistency of the model. 

UltraScan offers a global extinction fitting module that generates intrinsic extinc-

tion profiles from wavelength scans at different concentration for each component in

the fit. These profiles can be normalized with known extinction coefficients at one

wavelength and imported into the fitting model such that the appropriate extinction

coefficients are applied for each component in the fit. This also helps in cases where

hypochromicity is an issue as long as the pure form of the associated species can be

measured. The algorithm is applied as follows: for each component, wavelength

scans are taken at 3–5 loading concentrations that are chosen so that each chro-

mophore is represented at least once with an optical density between 0.5 and 1.0

absorbance units. All scans are then globally fitted to the following linear combina-

tion of Gaussian terms:

Ei(λ) � ci�
n

j�1

exp� � � bi (10)

where Ei the extinction profile of wavelength scan i, ci the relative concentration of

scan i, λ the wavelength, aj is the position of chromophore j, σ j the width of the peak

produced by chromophore j, n the number of chromophores, and bi a baseline offset

for scan i. aj and σj are global parameters required to be identical for all wavelength

scans. Once a global solution has been found, the factor ci is normalized with a

known molar extinction coefficient at a desired wavelength and all other wave-

lengths are scaled accordingly. An example for a global extinction fit is shown in

Figure 9. UltraScan provides the extinction coefficient at 280 nm as an estimate from

peptide sequence according to the method of Gill and von Hippel,22 which can be

conveniently used to scale intrinsic extinction coefficient profiles to molar extinction

coefficients. 

(�λ�aj)
2

��
2σ 2

j
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3.7 Monte Carlo Module

All experimental data fitted to a linear or nonlinear model contains experimental

noise. The assumption in all fits performed by UltraScan is that the experimental

noise is random and that all systematic deviations are accounted for in the model. If

these assumptions are satisfied, the statistical confidence of the parameter estimates

depends on the magnitude and distribution of the random experimental noise. One

possibility for determining the confidence intervals of the parameter estimates would

be to perform repeat experiments and fit them to the same model in order to gener-

ate a distribution of values for each floated parameter. This distribution could be

used to obtain a statistical description of each parameter. Naturally, performing

repeat experiments is impractical because of the time and expense considerations. 

Instead, a Monte Carlo approach can be used to simulate a repeat experiment,

where experimental noise is synthetically generated by a random number generator,

and added to the best-fit model values. This will generate a new, synthetic dataset

which can be refit with the same model. Repeating this process a sufficient number

of times will provide the desired parameter distributions from which a statistical

description of the parameters can be obtained.

Two different approaches for generating synthetic noise are possible: (1) generat-

ing Gaussian noise comparable to the residuals from the best fit to the experimental

data, and adding it to the best fit; or (2) a bootstrap approach that randomly moves

residuals from the best fit to the experimental data to a different position. UltraScan

supports both the approaches. Because noise levels differ nonlinearly with absorbance

(see Figure 10) a true representation of the random noise is often not achieved with

the bootstrap approach, and the Gaussian noise generation is preferable. 

In the Gaussian approach, the residuals in a frame of 5–10 points in the neigh-

borhood of each experimental observation are averaged. The average then provides

the standard deviation input for the Box–Muller function.23 This function will return

Figure 9 Global extinction profile fir for a protein. Six separate concentrations in three
replicate measurements were globally fitted (grey circles fitted with thin lines)
resulting in an intrinsic extinction profile for the protein (heavy line). The extinc-
tion profile is calibrated at 280 nm with a known extinction coefficient derived
from peptide sequence. The global extinction profile is plotted as the right Y-axis,
the absorbance values from the wavelength scans are plotted on the left Y-axis

AQ:4
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Gaussian distributed random variables with a standard deviation that is commensu-

rate with the original residuals. These values are added to the best-fit values pre-

dicted by the model function, which are then refit. This method assures that local

changes in the size of the residuals are accurately reflected in the synthetically gen-

erated dataset. Five thousand Monte Carlo iterations are generally sufficient to

obtain a reliable probability distribution of each fitted parameter. The Monte Carlo

analysis returns a distribution of parameter values for each fitted parameter.

Once a sufficiently populated distribution has been obtained, the distribution is fit-

ted to a Gaussian function, and the following statistics are reported: minimum and

maximum, mean, median, skew, kurtosis, mode, standard error, standard deviation,

variance, correlation coefficient, and 95 and 99% confidence intervals. The confi-

dence intervals may be nonsymmetric. One problem with the application of the

Monte Carlo analysis is the prohibitive computational expense, especially for large

models with many parameters. To address this issue, UltraScan offers a Beowulf

Figure 10 UltraScan Monte Carlo control window. A parameter distribution for each fitted
parameter can be displayed and the analysis can be performed both locally or
remotely on a parallel cluster (Unix only)
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module that allows the Monte Carlo analysis to be performed on a cluster of appro-

priately configured Unix computers. The speed improvement is observed by per-

forming the Monte Carlo analysis in parallel scales linearly with each added

computational node. To assure that each node starts at a different point in the pseudo-

random sequence generated by the random number generator, each node is initial-

ized with a different random speed.

3.8 Utility Modules

UltraScan incorporates a number of utility functions to accomplish frequently per-

formed tasks. The protein analysis module accepts peptide sequence information in

Genbank format and calculates from it molecular weight, partial specific volume,

and extinction coefficients at 280 nm. The partial specific volume (ν�) is calculated

by summing the weight fraction of partial specific volume contributions from each

amino acid as reported by Durchschlag,24 and the calculation of the extinction coef-

ficient is based on the partial extinction contribution at 280 nm from the denatured

amino acids tyrosine, tryptophane, and cysteine as reported by Gill and von Hippel.22

A second utility provides for the calculation of hydrodynamic corrections resulting

from density and viscosity contributions from a collection of commonly used buffer

components according to methods outlined in the reference.25 Values for density and

viscosity are interpolated from polynomial fits to concentration data obtained from

the Sednterp database files.26 Molecular weights of RNA and DNA molecules can be

calculated from the sequence, including the contributions from various counterions.

Several file utilities assist the user in archiving experimental data, analysis results

and experimental reports, to merge data files from different directories and to re-

order the files into a single run, and to rename cell descriptions that have been incor-

rectly entered during data acquisition. A diagnostics module is also available that is

useful for reviewing single files or identifying file errors, such as truncated or cor-

rupted data acquisition files.

3.9 Database Modules

To facilitate the management of AUC projects and the large volume of data files col-

lected and generated during analysis, UltraScan includes a LIMS that is designed to

address the needs of a multi-user AUC facility. Many analytical ultracentrifuges are

employed in multi-user environments, and managing multiple experiments, experi-

mental data, and associated information quickly turns into a complex task. The

UltraScan LIMS is based on an Internet-capable relational database with both an

UltraScan interface and a web-based interface.

The LIMS addresses multiple objectives: first, it serves as a data repository for all

data relevant to an AUC experiment. Second, it serves as a data retrieval and web-based

presentation tool, and finally it assists multiple investigators to manage separate exper-

iments. The first goal of the database is to provide logically linked storage for experi-

mental project descriptions, experimental designs, the experimental data and analysis

results, for peptide and nucleic acid sequence files, as well as for buffer composition

files and images from gels or absorbance spectra. All experimental and result data are
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stored in a compressed format and are associated with investigator identifications,

which facilitates data analysis and retrieval in multi-user environments.

Experimental data are committed to the database by linking an entire run, which

may consist of multiple cells and channels in each cell, with an experimental proj-

ect description and run profile, which are described by the investigator. Each chan-

nel is linked with up to three peptide or nucleic acid sequence files, one buffer file,

the date of the experiment, the investigator information, as well as the name of the

database, the run type (i.e., equilibrium, velocity, diffusion, or wavelength experi-

ment), and the optical measurement method (absorbance, interference, fluorescence,

or intensity). Supplemental data needed for data analysis are stored in separate tables

and logically linked to the experimental data.

During analysis, any required supplemental data are automatically retrieved from

the database, processed on the fly and integrated into the analysis. For example, the

appropriate buffer composition is associated with each centerpiece channel and

retrieved during the analysis. Using the composition information, viscosity and den-

sity corrections are calculated and automatically applied in the analysis. Similarly,

peptide sequence data are retrieved and used to calculate an estimate for the partial

specific volume of the peptide, which is then applied to the analysis. All automatic

values can be manually overridden by the user.

Centerpiece geometry, rotor type, and channel number are also stored in the data-

base and associated with each dataset. This information is used to calculate a precise

position for the channel bottom. Each rotor in use at a laboratory can be individually

calibrated to determine speed-dependent rotor stretching. Precise information on rotor

stretching and channel geometry are needed to determine the position of the channel

bottom. A precise value for this position is needed to calculate accurate mass integrals

for equilibrium experiments and to set boundary conditions for finite element solu-

tions. Centerpiece geometry, rotor calibration, peptide, nucleic acid, and buffer infor-

mation only have to be entered once and can be linked from any experiment instead of

laboriously recalculating these values by hand for each new experiment.

After data analysis is completed, the LIMS searches the hard drive for all analy-

sis results from each method applied during the analysis and commits the results to

the database. An overview of the database structure and the relationships is shown in

Figure 11. The relational database engine used in UltraScan is the open source

MySQL database.6 To facilitate data exchange and collaborations, the user can

switch among multiple databases and access data from remote sites. Database access

is restricted through username and password authentication to prevent unauthorized

access to any private data.

3.10 Web-Based Modules

Several web-based PHP applets allow a remote user to interact with the database con-

tents. After authentication, the investigator can enter project requests, peptide

sequences, compose buffers, and upload related images. Next, the investigator can

enter sample information and specify the type of experiment to be performed. Each

item entered by the investigator receives a description which allows the investigator

to later search and retrieve or review each item. In order to accommodate a multi-user
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Figure 11 Overview of the UltraScan LIMS database structure version 1.0 Relationships
are shown by arrows
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environment, the LIMS offers different user levels: investigator, technician, supervi-

sor, and data analyst. Each user level has a different authentication status allowing

read-only, write, or no access to different data segments.

Once experimental results have been uploaded, the investigator can retrieve the

results through the web interface and review or download them to his or her personal

computer. A tracking system allows the LIMS users to track the status of each exper-

iment (i.e., designed, scheduled, in progress, uploaded). In addition to the database-

oriented data management, analysis results can also be presented as a web page and

saved directly to a folder served by a webserver. UltraScan will generate an html

encoded report file and provide convenient access to the experimental data and

analysis results by linking graphs, data files, and analysis reports to the report file.

4 Summary

UltraScan represents a comprehensive software package addressing a wide range of

experimental situations and providing multiple analysis methods for sedimentation

velocity and equilibrium experiments. Design and modeling functions assist with the

correct design of an experiment, and a Beowulf module allows computationally

intensive tasks to be performed on a parallel computer. An Internet-based relational

database is available for managing AUC experiments in a multi-user facility envi-

ronment. The software is written in C++ using the portable QT toolkit. Software

packages for Unix, Linux, Microsoft Windows, and Macintosh OS-X can be down-

loaded for free from http://www.ultrascan.uthscsa.edu.
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