
Performance Optimization of Large
Non-Negatively Constrained Least Squares Problems

with an Application in Biophysics

ABSTRACT
Solving large non-negatively constrained least squares systems
is frequently used in the physical sciences to estimate model
parameters which best fit experimental data. Analytical
Ultracentrifugation (AUC) is an important hydrodynamic
experimental technique used in biophysics to characterize
macromolecules and to determine parameters such as molecular
weight and shape. We previously developed a parallel divide
and conquer method to facilitate solving the large systems
obtained from AUC experiments. New AUC instruments
equipped with multi-wavelength (MWL) detectors have recently
increased the data sizes by three orders of magnitude. Analyzing
the MWL data requires significant compute resources. To better
utilize these resources, we introduce a procedure allowing the
researcher to optimize the divide and conquer scheme along a
continuum from minimum wall time to minimum compute
service units. We achieve our results by implementing a
preprocessing stage performed on a local workstation before job
submission.

Categories and Subject Descriptors
G.1.6 [Numerical Analysis]: Least Squares Methods. G.1.3
[Numerical Analysis]: Numerical Linear Algebra - linear
systems; direct and iterative methods; sparse, structured and
very large systems. J.3 [Life and Medical Sciences]: Biology
and genetics.

General Terms
Algorithms, Performance.

Keywords
Non-negatively constrained least squares, Analytical
Ultracentrifugation.

1. INTRODUCTION
In this paper we describe a procedure to optimize large non-
negative least squares problems. Solving these problems can
require significant compute resources. Our procedure improves
compute resource utilization. We target the inverse problem
involved in modeling analytical ultracentrifugation experimental
data, but our procedure is general in application. The goal of this
paper is to introduce a recipe for anyone wishing to apply our
previously published [1] divide and conquer method to other
non-negative least squares problems in an efficient manner.

The sections of our introduction describe the necessary
background. Non-negatively constrained least squares is a
general method used for parameter estimation and is described
in Section 1.1. Analytical ultracentrifugation is an important
experimental method to which we apply our techniques and is
described in Section 1.2. Our scalable high-performance divide
and conquer method for solving non-negatively constrained least
squares problems is described in Section 1.3. Specifically,
important variables and equations that are necessary to
understand our procedure for optimizing the divide and conquer
method are described in Section 1.3.1. In Section 1.4, we
discuss the motivation for the developments presented in this
paper.

1.1 Non-negatively constrained least squares
In the physical sciences, researchers often wish to find the most
appropriate model possible to describe a given set of
experimental data [2]. It is frequently the case that there exists
an equation from which one can compute simulated
experimental data from a known model. This is known as the
forward problem. It is usually much more difficult to determine
the model from the experimental data, which is an inverse
problem. The limited resolution of experimental measurements
requires a best fit solution.

Experimental data typically contain noise from various sources,
which includes random noise produced by experimental
instrumentation. The presence of noise in the experimental data
further complicates the inverse computation and can lead to
inaccurate results. Reducing the effects of noise from
experimental data often involves using Tikhonov or Maximum-
Entropy regularization [2]. These methods introduce a bias that
smoothes the solution. To overcome this bias, we have
previously introduced a genetic algorithm technique to provide
parsimonious regularization [3]. Parsimonious regularization
returns the best fit solution with the fewest number of
parameters.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy
otherwise, or republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee.

TeraGrid’10, August 2-5, 2010, Pittsburgh, PA, USA.

Copyright 2010 ACM 978-1-60558-818-6/10/08…$10.00.

Borries Demeler
Department of Biochemistry,

University of Texas Health Science
Center at San Antonio
7703 Floyd Curl Drive

San Antonio, Texas 78229
1-210-767-3332

demeler@biochem.uthscsa.edu

Emre H Brookes
Department of Biochemistry,

University of Texas Health Science
Center at San Antonio
7703 Floyd Curl Drive

San Antonio, Texas 78229
1-210-767-3301

emre@biochem.uthscsa.edu

For example, in the canonical 'source history reconstruction'
problem of ground-water contamination, several polluting
factories may be dumping contaminants into the ground-water.
By placing test wells at multiple locations and measuring the
observed contamination over time, we obtain experimental data.
From this data we wish to determine the location of the polluting
factories and the amount of pollutants they are dumping. It is
straightforward to determine what we will find for data at the test
wells if we know the number and location of the factories and
their dumping, but finding the polluters from test wells is
generally a 'hard' inverse problem of parameter estimation. The
problem is mathematically hard because there are issues of
uniqueness, existence and instability. Therefore, we look for a
'best fit' solution, often using a constrained least-squares
technique [2].

Another application of inverse problems is in astronomical image
reconstruction. An earth-based telescope must make
observations through the atmosphere which can blur the image.
The astronomer wishes to remove the effects of blurring. In this
case the blurred image is the experimental data and the model
parameters to be estimated are the number, locations and
intensity of light sources [4,5].

Inverse problems are often approached using linear modeling:
Let x be a vector which contains numbers known as model
parameters or simply as parameters. Let the matrix A be a linear
modeling function. Let the vector b be the experimental data. A
model of the experimental data b is obtained from the parameters
by computing the forward problem of matrix-vector
multiplication: Ax=b . The inverse problem is to compute x
from experimental data b. When the noise contained in b is
random with a normal distribution, it can be shown that the
statistically most likely solution is a least squares solution. This
solution is an x which minimizes ∥Ax−b∥2 given A and b,
where:

∥Ax−b∥2=∑
i

 ∑
j

A ij x j−bi
2

(1.1.1)

If the model parameters are restricted to positive real values, then
a positively constrained least squares algorithm such as NNLS
[6] is used.

NNLS is an iterative algorithm which uses two sets to index the
columns of A. Initially, one set Z contains the indices of all
columns and the other set P is empty. The algorithm proceeds by
moving indices, one at a time, from Z to P, and performing
standard (unconstrained) least squares on the system consisting
of only the columns indexed by P. The choice of index at each
iteration is computed using a projection. Occasional
backtracking will occur when the least squares algorithm
produces a negative element of x. The interested reader can find
further details in [6].

For a general least squares problem, there may be many solutions
that have an adequate value for ∥Ax−b∥2 . Considering that b
contains noise, it is often sufficient to have an approximate
solution. Regularization methods have been used to provide
approximate solutions in the presence of noise. Tikhonov
regularization simultaneously minimizes ∥Ax−b∥2 and ∥x∥2 .
The Tiknonov solution introduces a bias, as this procedure
penalizes sharp peaks in the vector x. Maximum-Entropy
regularization simultaneously minimizes ∥Ax−b∥2 and
maximizes −∑ xi lnw i xi , where wi are weights chosen by the

user. The choice of weights causes significant bias to the
obtained solution. As with Tikhonov regularization, this method
generally penalizes sharp peaks in the vector x. Parsimonious
regularization simultaneously minimizes ∥Ax−b∥2 and the
number of nonzero elements of x. Further details about
regularization can be found in [2,3].

1.2 Analytical ultracentrifugation
In analytical ultracentrifugation (AUC) sedimentation velocity
(SV) experiments a sample solution is placed in a high speed
centrifuge. The data obtained are pictures of the sample
concentration taken over time. From this data we wish to obtain
the molecular weights, shapes and partial concentrations of the
solutes contained in the sample. Analysis of AUC SV
experiments is the target application for our methods.

AUC is a powerful technique for determining hydrodynamic
properties of biological macromolecules and synthetic polymers
[7,8,9]. AUC can be used to identify the heterogeneity of a
sample in both molecular weight and macromolecular shape.
Since AUC experiments are conducted in solution, it is possible
to observe macromolecules and macromolecular assemblies in a
physiological environment, unconstrained by a crystal structure
or electron microscope grid. Systems can be studied under high
concentrations or under very dilute conditions, and under
virtually unlimited buffer conditions. A buffer is a solution
which maintains a constant pH and may contain other chemicals
to stabilize the solutes1. Furthermore, the methods are applicable
to a very large range of molecular weights, extending from just a
few hundred Daltons to systems as large as whole virus particles.
Results of these studies can allow the researcher to follow
assembly processes of multi-enzyme complexes, characterize
recombinant proteins and assess sample purity before proceeding
to NMR [10] or X-ray crystallography experiments [11]. The
techniques addressed are currently being used in AUC studies
focusing on macromolecular properties of systems related to
disease, cancer and aging.

In AUC sedimentation velocity experiments, a sample in solution
is contained in a sector shaped cell which is placed in the
ultracentrifuge. The ultracentrifuge runs at speeds from 2,000 to
60,000 RPM. At regular time intervals, the instrument records a
radial concentration profile of the cell, which is determined from
light absorbance at a particular wavelength or by measuring the
fluorescence intensity or refractive index of the solution. At the
beginning of the experiment, the sample is uniformly distributed
throughout the cell and therefore the first observation shows a
uniform radial concentration profile. As the experiment
progresses, the centripetal force, which can be as high as
290,000g, causes the sample to sediment towards the bottom of
the cell. After several hours or more, depending on the sample
and the speed of the ultracentrifuge, the sample will be fully
sedimented and further observations will contain an unchanging
radial concentration profile of an exponential form. The sample
may contain several solutes, where each solute is present at some
concentration. The behavior of a non-interacting solute is well
described by a second order PDE [12] known as the Lamm
equation [13]. The parameters describing each solute are the
sedimentation coefficient s, and the frictional ratio k. Given the
experimental conditions and solute parameters s and k, the Lamm
equation can be solved by finite element modeling [14,15],
providing a model radial concentration profile for the solute.

1 Solute: a single type molecule in solution.

Mathematically, the experimental data are placed in a vector b.
The elements of b are the observed radial concentration profiles
placed end-to-end for each time interval. For example, if each
radial concentration profile contains r points, b[2r + 1] will
contain the second radial concentration of the third observation.
Similarly, solutions to the Lamm equation can be placed in
vectors and collected into a matrix A. Therefore, each column of
A will be associated with the solute parameters s and k used to
solve the Lamm equation. Assuming the data contain normally
distributed errors from a distribution of constant variance, the
best fit solution vector x can be expressed as follows:

min
x≥0

∥Ax−b∥2 (1.2.1)

After solving eq. (1.2.1) for x, each element of x will contain the
concentration of each solute associated with the corresponding
column of A. Since negative concentrations do not make
physical sense, we use NNLS [6] to solve this equation.

Let U be the set of all possible solute parameters s and k. Let G
be a finite subset of U. Then given experimental data b, we can
define a function:

f : Gx ,ℝ (1.2.2)

which takes the input set G, builds the matrix A, computes the
NNLS solution of eq. (1.2.1), and returns x and the root mean
square deviation (RMSD) of the vector difference between Ax
and b, a scalar measure of the goodness-of-fit. Use of this
equation will be called an application of f or a basic computation
module. When f is applied to a set G, some elements of x will be
zero. Let G' be the subset of G that only contains the elements
associated with a nonzero element of x after an application of f.

Since we cannot search all of U, we must select some subset G
to search. Good solutions are not obtained if G does not contain
representatives of all the solutes present in the sample. For
example, if the sample contains two solutes, trying to solve f for
just one of the solutes gives erroneous results. Constraining the
search space is the first step towards application of all of the
methods subsequently described. The range of s can be
constrained by the van Holde-Weischet analysis [16]. Physical
limits constrain the frictional ratio k to a minimum value of one
(a spherical solute) and a maximum limit generally known a
priori to the researcher which ranges from up to four for proteins,
to up to ten or more for elongated or rod shaped molecules like
DNA chains or fibrils.

AUC SV experiments contain at least three types of noise. Time-
invariant noise produces a constant offset at a fixed radial
position and is identically valued at every observation. Similarly,
radial-invariant noise has a constant offset at a fixed time and has
identical values at every radial position. Time-invariant noise
can be caused by imperfections in the optical track of the
instrument, for example, a fingerprint on the sample cell window.
Methods have been developed to remove time-invariant and
radial-invariant noise [17]. The third type of noise is normally
distributed random noise. Additional noise sources such as
nonlinearity in the optics, intensity fluctuations of the lamp
flashes, refractive artifacts, and systematic contributions of
unknown source may also be present. These additional sources
have not been modeled.

1.3 Divide and conquer

To facilitate the solving of large NNLS systems, we introduced a
divide and conquer technique [1]. We start with experimental
data and wish to search a large set of possible parameters G (see
equation 1.2.2) to discover the subset of G that best fits our data.
Since the matrix A produced by G is in general too large to be
computed on a single workstation, we divide the problem as
follows: We partition G into subsets {G1, G2, ... ,Gn} and apply f
to each subset to obtain a collection {G' 1, G' 2,... , G ' n} . We
subsequently union the results and apply f to the union. This is
graphically shown in Figure 1.3.1.

This basic methodology is complicated by two facts. The result
of the union of all sets G' i∈{G' 1, G' 2, ... ,G ' n} may produce a
system too large to compute on one workstation. The solution to
this is a recursive application of the method which we name the
multistage method. This is shown graphically in Figure 1.3.2.

The second complication is whether this divide and conquer
method achieves the same result as applying f to the set G. The
solution is to apply the multistage divide and conquer method
iteratively by taking the result of the multistage method and
unioning it to each set and repeating the procedure. This
procedure is a contraction which obtains a fixed point and is
empirically equivalent to applying f to G. The full iterative
multistage procedure is shown in the following Figure 1.3.3.

Figure 1.3.1: The top row contains the sets G1,G2 G3 and G4.
The bottom box contains G1, the union of the sets G'1, G'2, G'3

and G'4. The final result is G1'. The top row can be
computed on independent processors, but the final result

depends on their results.

Figure 1.3.2: The multistage method. In this case the size of
the unions of the results from the top row are too large to
compute on a single processor and must be computed in

groups (middle row).

Figure 1.3.3: The iterative multistage method. In this case
the result of each multistage solution is unioned back into the
initial sets G ,G 1,G 2,. .. ,G n and the process is repeated until the
final result is unchanging. This achieves the highest quality

result.

There is an alternative to the iterative method. An equivalent
goodness of fit as measured by RMSD can be obtained by
increasing the resolution of the original set G.

The partitioning of G into subsets Gi∈{G1, G2, ... ,G n} should be
done carefully. The best quality result will be obtained when
each subset Gi “covers” the range of the parameter space. This
will result in a lower RMSD for the non-iterative multistage
method and a fewer number of iterations for the iterative variant.
For further details on the divide and conquer method see [1,18].

1.3.1 Performance of divide and conquer
We introduced the divide and conquer method in a 2006 paper
[1]. In the paper we also developed and validated an analytic
performance prediction model. Additionally, we demonstrated
the weak scalability of the method. In this section we discuss the
variables and equations from that paper which are pertinent to
understanding our optimization procedure.

We start with the experimental data in a vector b. It is important
to fix this value since the subsequent variables and the resulting
performance depend on b. G is the set of points in our parameter
space to be searched. n is the number of points in the set G. f is
the basic computational procedure of taking G or any subset of
G, building a matrix, and finding the non-negatively constrained
least squares fit of the matrix to b. Application of f returns a set
G', containing the elements of G contributing to the best fit
solution. We assume the application of f on G to produce
G' can be computed in polynomial time, T G = na . This
approximation has been validated for the NNLS problems
encountered in AUC. The equation for TG introduces the
variables  and a.  is a proportionality constant to convert
from unitless to measured time.  is dependent on b, f, and the
characteristics of the processor. Conveniently,  divides out of
our equations and can be ignored for our discussions. Simply
note that  must be determined if one wishes to compute
measured time. We fix the variable a for a given f. a is
determined by exponential regression. For non-negative least
squares with b from AUC experiments we have computed
a≈1.3 . We also use a variant f where a≈2 and have applied f

to problems where a≈3 . To “divide and conquer”, we partition
G into q equally-sized subsets Gi. Therefore, each subset will
contain m=n /q points of G. The time to apply f to Gi is

T Gi = ma . The set resulting from an application of f to Gi is
Gi'. The number of points in Gi' is of relevance, since this
determines the number of stages required to complete the
multistage computation. w=E ∣Gi ' ∣ /m is the expected value
of the fraction of points returned by an application of f on Gi

divided by the number of points in the set G. The total number
of stages the multistage method will require is
r=ceil −logq / log w . Given p processors, the number of

stages where there are at least p computational modules without
data dependency are l= floor −logq−log p / logw . Finally,
the time to compute a multistage computation is:

T MP =  [r
q

p1−w 
]ma (1.3.1.1)

The processor efficiency is:

 =

q
p1−w

q
p1−w

r−l
(1.3.1.2)

All of these variables and equations are summarized in Table
1.3.1.1. Further details of the derivation of these equations can
be found in [1].

1.3.2 Parallel efficiency
The inefficiencies in parallel algorithms are due to three sources:
interprocess communication that cannot be masked by productive
computations, excess computations, and processor idling. For the
divide and conquer method the interprocess communication
consists of sending out and receiving sets of parameters, which
are quite small and insignificant compared to the time spent by
each worker to perform an application of f. There is no excess
computation. The major source of inefficiency is processor
idling due to data dependency in the multistage method.

1.4 Motiviation
The typical AUC experiment contains 107 data points and the
number of points of G we wish to search are 106, creating a
matrix A of 1013 elements. Without optimization of the sizes of
the first stage subsets, typical iterative multistage processing on
128 processors takes 30 minutes. Monte Carlo methods multiply
this time by 50 to process for 25 hours. New multi-wavelength
(MWL) experiments contain 1010 data points, requiring
significantly more compute resources. A recent iterative Monte
Carlo MWL analysis used 200,000 service units2 of the Texas
Advanced Computer Center's Ranger cluster.

Researchers worldwide utilize our method for analyzing AUC
data through our TeraGrid Science Gateway at
http://uslims.uthscsa.edu. They currently select the sizes of the
subsets of G without any knowledge of the resulting performance
of their choice, which can have significant cost implications for
this already expensive computation.

2 Service units (SU) are a standard unit of allocation granted to
researchers on large high performance computation systems.
One SU is generally one hour of one processor.

Table 1.3.1.1: Summary of Variables and Equations Used. The variables used are listed in the first column in partial order of
dependence. For referencing our SC06 paper[1] the cross reference is listed in the second column. “not defined” means the
specific variable was not defined. The equation column contains “n/a” if the variable is not defined by an equation.

Variable
Cross reference to

our SC06 paper
Equation Description

b “the data” n/a The experimental data

G S n/a The set of points in our parameter space.

n n n=|G| Total number of points in G.

f f f : GG'

f takes a set of points, builds models to populate columns of a
matrix, computes the non-negative least squares best fit to the
experimental data, and returns a subset of G containing those
elements of G which contribute to the best fit solution.

 not defined n/a  is a constant of proportionality which is used to determine
execution times.  is a property of the data b.

a a n/a
a is a property of f. a can be determined from exponential
regression of f for different sizes of sets G on various b.

TG TORIGINAL T G =  na Time to compute an application of f on G.

q k n/a Number of sets in the partition of G

Gi Si n/a The i-th set of the partition of G.

m m m=
n
q

Number of points in each set in the partition of G.

TGi not defined T Gi = ma
Time to compute a application of f on Gi

w x w=
E  ∣ f Gi ∣ 

m
Expected value of the fraction of points returned by an application
of f.

r r r=ceil −
log q
logw

 Maximum number of stages of the multistage method.

p p n/a Number of processors.

l l l= floor −
log q−log p

log w


Number of stages where the number of computational modules is at
least p.

TMP TMULTISTAGEPARALLEL T MP = [r
q

p1−w 
]ma Time to execute the multistage applications up to a proportionality

factor which is fixed given experimental data.

   =

q
1−w

q
p1−w

r−l

Speedup of computing f(G) versus a single iteration of our
multistage method given a fixed m

   =

q
p1−w

q
p1−w

r−l
Processor utilization.

2. METHOD
In this section we describe the procedure to optimize the
performance of the divide and conquer method. There is a
continuum of possibilities for this optimization. The researcher
may wish to receive the results with a minimum of execution
time or may wish to minimize the cost of the analysis in terms of
service units. The researcher may also wish to select a point on
the continuum from minimum execution time to minimum
compute service units.

The question can be stated as: Given experimental data we wish
to analyze at a predetermined resolution and some available
compute resource with max-p processors, how do we determine
the optimal run variables? Using the terminology described in
Section 1.3.1 and summarized in Table 1.3.1.1 the problem can
be stated precisely: Given max-p, b, a, f, and G: how does one
determine the optimal number of processors p and the number of
sets q or equivalently, the size of the each Gi, m? To minimize
execution time, one might naïvely assume to use all the available
processors, by setting both p and q to max-p, yet it will be shown
that this is quite wasteful of compute resources. To minimize
cost in service units, one may assume to set p to 1, but m must
still be determined. It will be shown that for a small increase
over the minimum cost, a significant improvement in execution
time can be obtained.

Our optimization procedure begins in Section 2.1 with the
estimation of the variable w. Given this result, we show how to
optimize the non-iterative multistage case in Section 2.2 and the
iterative multistage case in Section 2.3. For instructive examples
we have chosen seven data sets obtained from AUC experiments.
These are taken from a variety of researchers' analyses of DNA
and proteins. For G we use a grid of 129,600 points
representative of the parameter space appropriate to each
experiment. For our examples, we used values of m in the range
of 25 to 650. Values of m smaller than 25 result in Gi being
trivially small and as the number of points in each Gi get too
small, the overall performance suffers. Values of m larger than
650 result in Gi that exceed the available memory of individual
processors to compute a single application of f. These values are
for our experience with AUC data. The investigator applying the
method to other problems should determine the ranges
appropriate to their problems.

2.1 Estimating w
Recall from Section 1.3.1 and Table 1.3.1.1 that w is the expected
fraction of points returned from an application of f on a set Gi.
This important variable determines the total number of stages r.
As m increases, w and r decrease. The time to compute an
application of f to Gi is minimized with small m, but the number
of stages r required increases dramatically. To demonstrate this
fact we sampled applications of f to Gi on our seven example data
sets with varying m. For each sample we computed w and r. The
results are shown in Figures 2.1.1 and 2.1.2.

An estimate for w as a function of m is dependent on f, G, and b.
Given the dependencies and a priori knowledge of the range of
interest of m, it is a simple matter to select a set of equidistant
points in the range of m. For each point in the selected set, create
a few sets Gi. and apply f to each, giving an average w(m). We
have obtained good results with approximately 3 to 5 such sets.
From the w(m) computed, w(m) can be extended to a function on
the range of interest of m by linear interpolation.

2.2 Optimizing: Non-Iterative Multistage
In this section we explain how to determine optimal values of m
and p. Given w(m) described in Section 2.1, we can then
compute arrays TMP(m,p) and Cost(m,p), which contain the
execution times and costs, using the equations of Section 1.3.1.1
and Table 1.3.1.1. This is detailed in the procedure described in
Text 2.2.1.

Figure 2.1.1: The relationship of the size of each set m and w,
the expected fraction of parameters returned by an

application f. Seven AUC example data sets were analyzed.
As m increases the size of each Gi, increases, w decreases.

Figure 2.1.2: The relationship of the size of each set m and
the number of stages required, r. Seven AUC example data

sets were analyzed. As m increases, r decreases.

1.foreach m

2. q 
n
m

3. r  ceil −
logq

logw m 


4. foreach p

5. T MPm , p  [r
q

p1−w m
]ma

6. Cost m, p  p⋅T MPm , p

Text 2.2.1: The procedure for computing optimal m and p
for a given non-iterative multistage problem.

Note that we set =1 in step 5 for unitless computations of TMP.
In practice, we “normalize” the matrix TMP by dividing all the TMP

by the minimum value found in the matrix. We similarly
“normalize” Cost(m,p) by dividing by the minimum cost found.
To determine actual computational times, the applications of f
should be timed on the target system to compute  . Once
TMP(m,p) and Cost(m,p) have been computed it is a trivial matter
to search these matrices for the minimum execution time and
minimum cost. To provide the user with an intuitive choice
between these limits, we produce a continuum of costs from the
minimum computational cost to the cost of the minimum
execution time. This is achieved by creating equivalence classes
containing points (m,p) with identical or nearly identical costs.
Each equivalence class is assigned the minimum execution time
of all points within the equivalence class. The procedure is
shown in Text 2.2.2.

The procedure of Text 2.2.2 produces three arrays which are
functions of cost c: BestTime(c) is the best relative execution
time for cost c, Bestm(c) is the associated value of m, and
Bestp(c) is the associated value of p. There is no guarantee after
this procedure that BestTime(c) is a strictly increasing function.
Increasing the divisor of step 3 (we used 1000) alleviates this
issue. In practice, steps 3 through 9 of Text 2.2.2 can be inserted
after step 6 of Text 2.2.1. For illustration of these procedures we
processed our example AUC datasets and plotted BestTime(c).
Since we “normalized” TMP(m,p) and Cost(m,p) the minimum
time and minimum cost are both 1. Interestingly, we had
improved execution times for relative costs as high as 10 times
the minimum cost, but with insignificant improvement in relative
time. For this reason we clipped the relative cost at 2.
Importantly, paying the cost of many service units did little to
improve the execution time. Also, paying a minor 10 or 20
percent additional cost over the minimum significantly improves
the execution time. The relative cost versus p shows a linear
scaling. The divide and conquer method has been shown to be
weakly scalable, so to make good use of more processors, a
larger G is needed. The results are shown in Figures 2.2.1 and
2.2.2.

2.3 Optimizing: Iterative Multistage
The iterative method, which provides the highest quality result
introduces the further complication that the entire multistage
procedure is repeated until a fixed point is reached. The
iterations vary as a function of m. We computed the number of
iterations required for the multistage divide and conquer method
to converge for each of our seven AUC experiments. We used
values of m in {24,36,54,121,182,273,410,614}. The results are
shown in Figure 2.3.1.

Notice that the minimum number of iterations is two. The
iterative method requires a minimum of two passes to determine
convergence. Small m require more iterations, which we believe
makes intuitive sense in the following way: since each Gi “sees”
less of the solution space, it can only return an approximate
result. These approximate results will be brought together at the
end of the multistage process and must be unioned back into each
original Gi during the subsequent iteration. This “expands the
sight” of each Gi on each subsequent iteration, allowing the
quality of the result to improve.

Figure 2.2.2: Relative cost versus p for seven AUC
experiments.

Figure 2.2.1: Relative cost versus relative time for seven
AUC experiments.

1.foreach m

2. foreach p

3. c  floor 
Cost m , p

1000
⋅1000

4. if not defined BestTimec

5 BestTimec  ∞

6. if BestTimec  T MPm , p

7. BestTimec  T MPm , p

8. Bestmc  m

9. Bestpc  p

Text 2.2.2: The second step of the procedure for computing
optimal m and p for a given multistage non-iterative

problem. The division and multiplication by 1000 in step 3
controls the resolution of the costs.

To apply the cost of iterations we must modify our execution
time equation by including two factors. One factor is the
multiple of the number of iterations. We define I(m) to be the
number of iterations required for m. Since I(m) cannot be known
without actually performing the full iterative multistage process,
a record should be kept of prior iterative runs to be used as a
predictor of future runs. The second factor increases the size of
each Gi in subsequent iterations due to the union of the previous
multistage result. The number of points added to each Gi is
approximately the number of points we expect in the final result,
n⋅wn . Due to time and memory restrictions, w(m) is only

computed for values of m << n. We therefore let mMAX be the
largest value of m for which we have a w(m) computed. The
estimated number of points added to each Gi in the subsequent
stages becomes m MAX⋅wmMAX  . With these additions, we can
state the equation for the time to execute the iterative multistage
parallel divide and conquer method TIMP as follows:

T IMP = [r
q

p1−wm 
] I mmmMAX w mMAX 

a (2.3.1)

This equation is substituted for TMP in the procedures of Text
2.2.1 and 2.2.2.

As an example computation of I(m) for AUC experiments, we
take an average of the 7 experimental systems iteration counts
and provide an I(m) which is a linear interpolation of the average
values. We force I(m) to be a decreasing function of m based
upon empirical observations and our belief that larger systems
should iterate fewer times. It is difficult to predict the actual
number of iterations a specific analysis will require. For
example, if by chance, one of the sets Gi of our partition of G
contains the best fit solution, the system will converge in the
minimum two iterations.

2.4 Optimization Recipe
In summary, the procedure to optimize the processing of a divide
and conquer analysis is as follows: We start with our
experimental data b, a desired resolution G, and a compute
resource of max-p processors. We estimate w by analysis of a
random sampling of Gi for a range of m as described in Section
2.1. For the non-iterative multistage method, we apply the
procedures of Section 2.2 in Texts 2.2.1 and 2.2.2. For the
iterative multistage method, we must also have the iteration
estimation function I(m) in order to apply the procedures of Texts
2.2.1 and 2.2.2 modified by Equation 2.3.1. These procedures
compute the data necessary to display an optimal relative cost
and relative execution time graph. From the graph, the user can
choose an optimal cost and an associated execution time. The
user's choice determines the optimal values of m and p needed to
submit the job to the compute resource.

3. CONCLUSION
Solving non-negative least squares is an important problem in the
physical sciences. Analysis of AUC experiments relies on large
non-negative least squares problem solving. The divide and
conquer method can solve large non-negative least squares
problems in a parallel environment, but requires careful selection
of run variables to achieve optimal results in terms of minimum
execution time or minimum service unit cost. Naïve selection of
these parameters can result in an extreme waste of service units
or excessive computational time. Our procedure is suitable for
computation on a workstation prior to job submission. The

procedure computes the run variables to achieve optimality along
a continuum of costs. It applies to both the multistage and
iterative multistage divide and conquer non-negative least
squares method. This method has been validated on multiple
datasets from AUC experiments.

4. ACKNOWLEDGMENTS
The development of the UltraScan software is supported by the
National Institutes of Health (RR022200 to BD), supercomputer
allocations were provided through National Science Foundation
(TG-MCB070038, TG-MCB070040N to BD). We thank the
staff of the Texas Advanced Computer Center, Warren Smith for
discussions, and Joyce and Suzanne Tufek for editing assistance.

5. REFERENCES

[1] Brookes, E. H., Boppana, R.V. and Demeler, B. 2006
Computing large sparse multivariate optimization problems
with an application in biophysics. SuperComputing 2006.
DOI=http://doi.acm.org/10.1145/1188455.1188541

[2] Aster, C., Borchers, B. and Thurber, C. H. 2005 Parameter
estimation and inverse problems. Elsevier Academic Press.
London.

[3] Brookes, E. and Demeler, B. 2007 Parsimonious
regularization using genetic algorithms applied to the
analysis of analytical ultracentrifugation experiments.
GECCO Proceedings ACM 978-1-59593-697-4/07/0007.
DOI=http://doi.acm.org/10.1145/1276958.1277035

[4] Briggs, D.S. 1995 High fidelity deconvolution of
moderately resolved sources. Doctoral Thesis. New Mexico
Institute of Mining and Technology.

[5] Puetter, R. C. and Yahil, A. 1999 The pixon method of
image reconstruction. Astronomical data analysis software
and systems VIII, ASP Conf. Ser. Vol 172.

[6] Lawson, C. L. and Hanson, R. J. 1995 Solving least squares
problems, 2nd Edition. SIAM, Philadelphia.

[7] Cole, J. L. and Hansen, J. C. 1999 Analytical
ultracentrifugation as a contemporary biomolecular research
tool. J. Biomolecular Techniques, 10:163-74.

[8] Demeler, B. 2005 Hydrodynamic methods. Bioinformatics
basics: applications in biological science and medicine. 2nd
Edition. Pages 226-255. CRC Press LLC.

[9] van Holde, K. E. 1985 Physical biochemistry, 2nd Edition.
Prentice Hall, New Jersey.

[10] Claridge, T. D. W. 1999 High-resolution nmr techniques in
organic chemistry. Pergamon, Oxford.

[11] Ladd, M., and Palmer, R. 2003 Structure determination by
x-ray crystallography, 4th Edition. Kluwer
Academic/Plenum Publishers, New York.

[12] Strauss, W. A. 1992 Partial differential equations, an
introduction. Wiley, New York.

[13] Lamm, O. 1929 Die Differentialgleichung der
Ultrazentrifugierung. Ark. Mat. Astrol. Fys., 21B:1-4.

[14] Cao W. and Demeler B. 2008 Modeling analytical
ultracentrifugation experiments with an adaptive space-time
finite element olution for multi-component reacting systems.
Biophys. J. 95(1):54-65

http://doi.acm.org/10.1145/1188455.1188541
http://doi.acm.org/10.1145/1276958.1277035
http://doi.acm.org/10.1145/1276958.1277035
http://doi.acm.org/10.1145/1276958.1277035
http://doi.acm.org/10.1145/1188455.1188541
http://doi.acm.org/10.1145/1188455.1188541

[15] Cao, W. and Demeler, B. 2005 Modeling analytical
ultracentrifugation experiments with an adaptive space-time
finite element solution of the Lamm equation. Biophysical
Journal. 90:4651-61.

[16] Demeler, B. and van Holde, K. E. 2004 Sedimentation
velocity analysis of highly heterogeneous systems. Anal.
Biochem. 335: 279-88.

[17] Schuck, P. and Demeler, B. 1999 Direct sedimentation
analysis of interference optical data in analytical
ultracentrifugation, Biophys. J. 76:2288-2296.

[18] Brookes, E., Cao, W., and Demeler, B. 2010 A two-
dimensional spectrum analysis for sedimentation velocity
experiments of mixtures with heterogeneity in molecular
weight and shape. Eur. Biophys. J. 39(3):405-14

	1. INTRODUCTION
	1.1 Non-negatively constrained least squares
	1.2 Analytical ultracentrifugation
	1.3 Divide and conquer
	1.3.1 Performance of divide and conquer
	1.3.2 Parallel efficiency

	1.4 Motiviation

	2. METHOD
	2.1 Estimating w
	2.2 Optimizing: Non-Iterative Multistage
	2.3 Optimizing: Iterative Multistage
	2.4 Optimization Recipe

	3. CONCLUSION
	4. ACKNOWLEDGMENTS
	5. REFERENCES

