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ABSTRACT
Solving large non-negatively constrained least squares systems 
is  frequently  used  in  the  physical  sciences  to  estimate  model 
parameters  which  best  fit  experimental  data.   Analytical 
Ultracentrifugation  (AUC)  is  an  important  hydrodynamic 
experimental  technique  used  in  biophysics  to  characterize 
macromolecules and to determine parameters such as molecular 
weight and shape.   We previously developed a parallel  divide 
and  conquer  method  to  facilitate  solving  the  large  systems 
obtained  from  AUC  experiments.   New  AUC  instruments 
equipped with multi-wavelength (MWL) detectors have recently 
increased the data sizes by three orders of magnitude.  Analyzing 
the MWL data requires significant compute resources.  To better 
utilize these resources,  we introduce a procedure allowing the 
researcher to optimize the divide and conquer scheme along a 
continuum  from  minimum  wall  time  to  minimum  compute 
service  units.   We  achieve  our  results  by  implementing  a 
preprocessing stage performed on a local workstation before job 
submission.

Categories and Subject Descriptors
G.1.6  [Numerical  Analysis]:  Least  Squares  Methods.  G.1.3 
[Numerical  Analysis]:  Numerical  Linear  Algebra  -  linear  
systems;  direct  and  iterative  methods;  sparse,  structured  and  
very  large systems.  J.3 [Life and Medical  Sciences]: Biology 
and genetics.

General Terms
Algorithms, Performance.

Keywords
Non-negatively  constrained  least  squares,  Analytical 
Ultracentrifugation.

1. INTRODUCTION
In  this  paper  we  describe  a  procedure  to  optimize  large  non-
negative  least  squares  problems.   Solving  these  problems  can 
require significant compute resources.  Our procedure improves 
compute  resource  utilization.   We  target  the  inverse  problem 
involved in modeling analytical ultracentrifugation experimental 
data, but our procedure is general in application. The goal of this 
paper is to introduce a recipe for anyone wishing to apply our 
previously  published  [1]  divide  and  conquer  method  to  other 
non-negative least squares problems in an efficient manner.

The  sections  of  our  introduction  describe  the  necessary 
background.   Non-negatively  constrained  least  squares  is  a 
general method used for parameter estimation and is described 
in  Section  1.1.   Analytical  ultracentrifugation  is  an  important 
experimental  method to which we apply our techniques and is 
described in Section 1.2.  Our scalable high-performance divide 
and conquer method for solving non-negatively constrained least 
squares  problems  is  described  in  Section  1.3.   Specifically, 
important  variables  and  equations  that  are  necessary  to 
understand our procedure for optimizing the divide and conquer 
method  are  described  in  Section  1.3.1.   In  Section  1.4,  we 
discuss  the  motivation  for  the  developments  presented  in  this 
paper.

1.1 Non-negatively constrained least squares
In the physical sciences, researchers often wish to find the most 
appropriate  model  possible  to  describe  a  given  set  of 
experimental data [2].  It is frequently the case that there exists 
an  equation  from  which  one  can  compute  simulated 
experimental data from a known model.   This is known as the 
forward problem.  It is usually much more difficult to determine 
the  model  from  the  experimental  data,  which  is  an  inverse 
problem.  The limited resolution of experimental measurements 
requires a best fit solution.

Experimental data typically contain noise from various sources, 
which  includes  random  noise  produced  by  experimental 
instrumentation.  The presence of noise in the experimental data 
further  complicates  the  inverse  computation  and  can  lead  to 
inaccurate  results.   Reducing  the  effects  of  noise  from 
experimental data often involves using Tikhonov or Maximum-
Entropy regularization [2].  These methods introduce a bias that 
smoothes  the  solution.   To  overcome  this  bias,  we  have 
previously introduced a genetic algorithm technique to provide 
parsimonious  regularization  [3].   Parsimonious  regularization 
returns  the  best  fit  solution  with  the  fewest  number  of 
parameters.
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For  example,  in  the  canonical  'source  history  reconstruction' 
problem  of  ground-water  contamination,  several  polluting 
factories  may be dumping contaminants  into  the ground-water. 
By  placing  test  wells  at  multiple  locations  and  measuring  the 
observed contamination over time, we obtain experimental data. 
From this data we wish to determine the location of the polluting 
factories and the amount of pollutants they are dumping.   It is 
straightforward to determine what we will find for data at the test 
wells if  we know the number and location of the factories and 
their  dumping,  but  finding  the  polluters  from  test  wells  is 
generally a 'hard' inverse problem of parameter estimation.  The 
problem  is  mathematically  hard  because  there  are  issues  of 
uniqueness, existence and instability.   Therefore,  we look for a 
'best  fit'  solution,  often  using  a  constrained  least-squares 
technique [2].

Another application of inverse problems is in astronomical image 
reconstruction.   An  earth-based  telescope  must  make 
observations through the atmosphere which can blur the image. 
The astronomer wishes to remove the effects of blurring. In this 
case  the  blurred image is the experimental  data and the  model 
parameters  to  be  estimated  are  the  number,  locations  and 
intensity of light sources [4,5].

Inverse  problems  are  often  approached  using  linear  modeling: 
Let  x be  a  vector  which  contains  numbers  known  as  model 
parameters or simply as parameters.  Let the matrix A be a linear 
modeling function.  Let the vector b be the experimental data.  A 
model of the experimental data b is obtained from the parameters 
by  computing  the  forward  problem  of  matrix-vector 
multiplication:  Ax=b .   The inverse  problem is  to  compute  x 
from experimental  data  b.   When  the  noise  contained  in  b is 
random  with  a  normal  distribution,  it  can  be  shown  that  the 
statistically most likely solution is a least squares solution.  This 
solution  is  an  x which  minimizes ∥Ax−b∥2 given  A  and  b, 
where:

∥Ax−b∥2=∑
i

 ∑
j

A ij x j−bi
2

(1.1.1)

If the model parameters are restricted to positive real values, then 
a positively  constrained least  squares  algorithm such  as NNLS 
[6] is used.

NNLS is an iterative algorithm which uses two sets to index the 
columns  of  A.   Initially,  one  set  Z  contains  the  indices  of  all 
columns and the other set P is empty.  The algorithm proceeds by 
moving  indices,  one  at  a  time,  from  Z  to  P,  and  performing 
standard (unconstrained) least  squares on the system consisting 
of only the columns indexed by P.  The choice of index at each 
iteration  is  computed  using  a  projection.   Occasional 
backtracking  will  occur  when  the  least  squares  algorithm 
produces a negative element of x. The interested reader can find 
further details in [6].

For a general least squares problem, there may be many solutions 
that have an adequate value for ∥Ax−b∥2 .  Considering that  b 
contains  noise,  it  is  often  sufficient  to  have  an  approximate 
solution.   Regularization  methods  have  been  used  to  provide 
approximate  solutions  in  the  presence  of  noise.   Tikhonov 
regularization simultaneously minimizes  ∥Ax−b∥2  and ∥x∥2 . 
The  Tiknonov  solution  introduces  a  bias,  as  this  procedure 
penalizes  sharp  peaks  in  the  vector  x.   Maximum-Entropy 
regularization  simultaneously  minimizes ∥Ax−b∥2 and 
maximizes  −∑ xi lnw i xi , where wi are weights chosen by the 

user.   The  choice  of  weights  causes  significant  bias  to  the 
obtained solution.  As with Tikhonov regularization, this method 
generally  penalizes  sharp peaks in the  vector  x.   Parsimonious 
regularization  simultaneously  minimizes  ∥Ax−b∥2  and  the 
number  of  nonzero  elements  of  x.  Further  details  about 
regularization can be found in [2,3].

1.2 Analytical ultracentrifugation
In  analytical  ultracentrifugation  (AUC)  sedimentation  velocity 
(SV)  experiments  a  sample  solution  is  placed  in  a  high  speed 
centrifuge.  The  data  obtained  are  pictures  of  the  sample 
concentration taken over time.  From this data we wish to obtain 
the molecular weights,  shapes and partial  concentrations of the 
solutes  contained  in  the  sample.   Analysis  of  AUC  SV 
experiments is the target application for our methods.

AUC  is  a  powerful  technique  for  determining  hydrodynamic 
properties of biological macromolecules and synthetic polymers 
[7,8,9].   AUC  can  be  used  to  identify  the  heterogeneity  of  a 
sample  in  both  molecular  weight  and  macromolecular  shape. 
Since AUC experiments are conducted in solution, it is possible 
to observe macromolecules and macromolecular assemblies in a 
physiological  environment,  unconstrained by a crystal  structure 
or electron microscope grid.  Systems can be studied under high 
concentrations  or  under  very  dilute  conditions,  and  under 
virtually  unlimited  buffer  conditions.   A  buffer  is  a  solution 
which maintains a constant pH and may contain other chemicals 
to stabilize the solutes1.  Furthermore, the methods are applicable 
to a very large range of molecular weights, extending from just a 
few hundred Daltons to systems as large as whole virus particles. 
Results  of  these  studies  can  allow  the  researcher  to  follow 
assembly  processes  of  multi-enzyme  complexes,  characterize 
recombinant proteins and assess sample purity before proceeding 
to NMR [10] or  X-ray  crystallography  experiments  [11].   The 
techniques  addressed  are  currently  being  used  in  AUC studies 
focusing  on  macromolecular  properties  of  systems  related  to 
disease, cancer and aging.

In AUC sedimentation velocity experiments, a sample in solution 
is  contained  in  a  sector  shaped  cell  which  is  placed  in  the 
ultracentrifuge.  The ultracentrifuge runs at speeds from 2,000 to 
60,000 RPM.  At regular time intervals, the instrument records a 
radial concentration profile of the cell, which is determined from 
light absorbance at a particular wavelength or by measuring the 
fluorescence intensity or refractive index of the solution.  At the 
beginning of the experiment, the sample is uniformly distributed 
throughout  the  cell  and therefore  the  first  observation shows a 
uniform  radial  concentration  profile.   As  the  experiment 
progresses,  the  centripetal  force,  which  can  be  as  high  as 
290,000g, causes the sample to sediment towards the bottom of 
the cell.  After several hours or more, depending on the sample 
and  the  speed  of  the  ultracentrifuge,  the  sample  will  be  fully 
sedimented and further observations will contain an unchanging 
radial concentration profile of an exponential form. The sample 
may contain several solutes, where each solute is  present at some 
concentration.  The behavior of a non-interacting solute is well 
described  by  a  second  order  PDE  [12]  known  as  the  Lamm 
equation  [13].  The  parameters  describing  each  solute  are  the 
sedimentation coefficient  s, and the frictional ratio  k.  Given the 
experimental conditions and solute parameters s and k, the Lamm 
equation  can  be  solved  by  finite  element  modeling  [14,15], 
providing a model radial concentration profile for the solute.  

1 Solute: a single type molecule in solution.



Mathematically, the experimental data are placed in a vector  b. 
The elements of b are the observed radial concentration profiles 
placed end-to-end for each time interval.   For example,  if each 
radial  concentration  profile  contains  r points,  b[2r +  1]  will 
contain the second radial concentration of the third observation. 
Similarly,  solutions  to  the  Lamm  equation  can  be  placed  in 
vectors and collected into a matrix A.  Therefore, each column of 
A will be associated with the solute parameters  s and  k used to 
solve the Lamm equation.  Assuming the data contain normally 
distributed  errors  from a  distribution  of  constant  variance,  the 
best fit solution vector x can be expressed as follows:

min
x≥0

∥Ax−b∥2 (1.2.1)

After solving eq. (1.2.1) for x, each element of x will contain the 
concentration of  each  solute  associated with the  corresponding 
column  of  A.   Since  negative  concentrations  do  not  make 
physical sense, we use NNLS [6] to solve this equation.

Let U  be the set of all possible solute parameters s and k.  Let G 
be a finite subset of  U. Then given experimental data  b, we can 
define a function:

f : Gx ,ℝ (1.2.2)

which takes the input set  G, builds the matrix  A, computes the 
NNLS solution of eq. (1.2.1),  and returns  x and the root mean 
square  deviation (RMSD) of  the  vector  difference between  Ax 
and  b,  a  scalar  measure  of  the  goodness-of-fit.   Use  of  this 
equation will be called an application of f or a basic computation 
module.  When f is applied to a set G, some elements of x will be 
zero.  Let  G' be the subset of  G that only contains the elements 
associated with a nonzero element of x after an application of f.

Since we cannot search all of  U, we must select some subset  G 
to search.  Good solutions are not obtained if G does not contain 
representatives  of  all  the  solutes  present  in  the  sample.   For 
example, if the sample contains two solutes, trying to solve f for 
just one of the solutes gives erroneous results.  Constraining the 
search  space  is  the  first  step  towards  application  of  all  of  the 
methods  subsequently  described.   The  range  of  s can  be 
constrained by the van Holde-Weischet analysis [16].  Physical 
limits constrain the frictional ratio  k to a minimum value of one 
(a  spherical  solute)  and  a  maximum  limit  generally  known  a 
priori to the researcher which ranges from up to four for proteins, 
to up to ten or more for elongated or rod shaped molecules like 
DNA chains or fibrils.

AUC SV experiments contain at least three types of noise.  Time-
invariant  noise  produces  a  constant  offset  at  a  fixed  radial 
position and is identically valued at every observation.  Similarly, 
radial-invariant noise has a constant offset at a fixed time and has 
identical  values  at  every  radial  position.   Time-invariant  noise 
can  be  caused  by  imperfections  in  the  optical  track  of  the 
instrument, for example, a fingerprint on the sample cell window. 
Methods  have  been  developed  to  remove  time-invariant  and 
radial-invariant noise [17].  The third type of noise is normally 
distributed  random  noise.   Additional  noise  sources  such  as 
nonlinearity  in  the  optics,  intensity  fluctuations  of  the  lamp 
flashes,  refractive  artifacts,  and  systematic  contributions  of 
unknown source may also be present.  These additional sources 
have not been modeled.

1.3 Divide and conquer

To facilitate the solving of large NNLS systems, we introduced a 
divide and conquer  technique [1].  We start  with  experimental 
data and wish to search a large set of possible parameters G (see 
equation 1.2.2) to discover the subset of G that best fits our data. 
Since the matrix  A produced by  G is in general too large to be 
computed  on  a  single  workstation,  we  divide  the  problem  as 
follows:  We partition G into subsets {G1, G2, ... ,Gn}  and apply f 
to  each  subset  to  obtain  a  collection  {G' 1, G' 2,... , G ' n} .   We 
subsequently union the results and apply f to the union.  This is 
graphically shown in Figure 1.3.1.

This basic methodology is complicated by two facts.  The result 
of  the  union  of  all  sets G' i∈{G' 1, G' 2, ... ,G ' n} may  produce  a 
system too large to compute on one workstation.  The solution to 
this is a recursive application of the method which we name the 
multistage method.  This is shown graphically in Figure 1.3.2.

The  second  complication  is  whether  this  divide  and  conquer 
method achieves the same result as applying f  to the set G.  The 
solution is  to  apply  the  multistage  divide and conquer  method 
iteratively  by  taking  the  result  of  the  multistage  method  and 
unioning  it  to  each  set  and  repeating  the  procedure.   This 
procedure  is  a  contraction  which  obtains  a  fixed  point  and  is 
empirically  equivalent  to  applying  f to  G.  The  full  iterative 
multistage procedure is shown in the following Figure 1.3.3.

Figure 1.3.1:  The top row contains the sets G1,G2 G3 and G4. 
The bottom box contains G1, the union of the sets G'1, G'2, G'3 

and G'4.  The final result is G1'.  The top row can be 
computed on independent processors, but the final result 

depends on their results.

Figure 1.3.2:  The multistage method.  In this case the size of 
the unions of the results from the top row are too large to 
compute on a single processor and must be computed in 

groups (middle row).



Figure 1.3.3:  The iterative multistage method. In this case 
the result of each multistage solution is unioned back into the 
initial sets G ,G 1,G 2,. .. ,G n and the process is repeated until the 
final result is unchanging.  This achieves the highest quality 

result.

There  is  an  alternative  to  the  iterative  method.  An  equivalent 
goodness  of  fit  as  measured  by  RMSD  can  be  obtained  by 
increasing the resolution of the original set G.

The partitioning of G into subsets Gi∈{G1, G2, ... ,G n} should be 
done carefully.   The  best  quality  result  will  be  obtained  when 
each subset  Gi “covers” the range of the parameter space.  This 
will  result  in  a  lower  RMSD  for  the  non-iterative  multistage 
method and a fewer number of iterations for the iterative variant. 
For further details on the divide and conquer method see [1,18].

1.3.1 Performance of divide and conquer
We introduced the divide and conquer method in a 2006 paper 
[1].  In the paper  we also developed and validated an analytic 
performance  prediction  model.   Additionally,  we  demonstrated 
the weak scalability of the method.  In this section we discuss the 
variables  and equations  from that  paper  which are  pertinent  to 
understanding our optimization procedure.

We start with the experimental data in a vector b.  It is important 
to fix this value since the subsequent variables and the resulting 
performance depend on b.  G is the set of points in our parameter 
space to be searched.  n is the number of points in the set G.  f is 
the basic computational procedure of taking  G or any subset of 
G, building a matrix, and finding the non-negatively constrained 
least squares fit of the matrix to b.  Application of f returns a set 
G',  containing  the  elements  of  G contributing  to  the  best  fit 
solution.   We  assume  the  application  of  f on  G to  produce 
G' can  be  computed  in  polynomial  time, T G = na .   This 
approximation  has  been  validated  for  the  NNLS  problems 
encountered  in  AUC.   The  equation  for  TG introduces  the 
variables    and  a.    is a proportionality constant to convert 
from unitless to measured time.    is dependent on b, f, and the 
characteristics of the processor.  Conveniently,   divides out of 
our  equations and can be ignored for  our  discussions.   Simply 
note  that    must  be  determined  if  one  wishes  to  compute 
measured  time.   We  fix  the  variable  a for  a  given  f.   a is 
determined  by  exponential  regression.   For  non-negative  least 
squares  with  b from  AUC  experiments  we  have  computed
a≈1.3 .  We also use a variant f where a≈2  and have applied f 

to problems where a≈3 .  To “divide and conquer”, we partition 
G into  q equally-sized subsets  Gi.  Therefore,  each subset  will 
contain  m=n /q  points  of  G.   The  time  to  apply  f to  Gi is 

T Gi = ma .  The set resulting from an application of f to Gi is 
Gi'.   The  number  of  points  in  Gi' is  of  relevance,  since  this 
determines  the  number  of  stages  required  to  complete  the 
multistage computation.   w=E ∣Gi ' ∣ /m  is  the expected value 
of the  fraction  of  points  returned  by an application of  f  on  Gi 

divided by the number of points in the set  G.  The total number 
of  stages  the  multistage  method  will  require  is 
r=ceil −logq / log w .   Given  p processors,  the  number  of 

stages where there are at least  p computational modules without 
data  dependency  are  l= floor −logq−log p / logw .   Finally, 
the time to compute a multistage computation is:

T MP =  [ r
q

p1−w 
]ma (1.3.1.1)

The processor efficiency is:

 =

q
p1−w

q
p1−w

r−l
(1.3.1.2)

All  of  these  variables  and  equations  are  summarized  in  Table 
1.3.1.1.   Further details of the derivation of these equations can 
be found in [1].

1.3.2 Parallel efficiency
The inefficiencies in parallel algorithms are due to three sources: 
interprocess communication that cannot be masked by productive 
computations, excess computations, and processor idling. For the 
divide  and  conquer  method  the  interprocess  communication 
consists of sending out and receiving sets of parameters, which 
are quite small and insignificant compared to the time spent by 
each worker to perform an application of  f.  There is no excess 
computation.   The  major  source  of  inefficiency  is  processor 
idling due to data dependency in the multistage method.

1.4 Motiviation
The  typical  AUC experiment  contains  107 data  points  and  the 
number  of  points  of  G we  wish  to  search  are  106, creating  a 
matrix  A of 1013 elements.  Without optimization of the sizes of 
the first stage subsets, typical iterative multistage processing on 
128 processors takes 30 minutes.  Monte Carlo methods multiply 
this time by 50 to process for 25 hours.  New multi-wavelength 
(MWL)  experiments  contain  1010 data  points,  requiring 
significantly more compute resources.  A recent iterative Monte 
Carlo MWL analysis  used 200,000  service  units2 of  the  Texas 
Advanced Computer Center's Ranger cluster.

Researchers  worldwide  utilize  our  method  for  analyzing  AUC 
data  through  our  TeraGrid  Science  Gateway  at 
http://uslims.uthscsa.edu.  They currently select the sizes of the 
subsets of G without any knowledge of the resulting performance 
of their choice, which can have significant cost implications for 
this already expensive computation.

2 Service units (SU) are a standard unit of allocation granted to 
researchers  on  large  high  performance  computation  systems. 
One SU is generally one hour of one processor.



Table 1.3.1.1:  Summary of Variables and Equations Used.  The variables used are listed in the first column in partial order of 
dependence.  For referencing our SC06 paper[1] the cross reference is listed in the second column.  “not defined” means the 
specific variable was not defined. The equation column contains “n/a” if the variable is not defined by an equation.

Variable
Cross reference to 

our SC06 paper
Equation Description

b “the data” n/a The experimental data

G S n/a The set of points in our parameter space.

n n n=|G| Total number of points in G.

f f f : GG'

f takes  a  set  of  points,  builds  models  to  populate  columns  of  a 
matrix,  computes  the  non-negative  least  squares  best  fit  to  the 
experimental  data,  and  returns  a  subset  of  G containing  those 
elements of G which contribute to the best fit solution.

 not defined n/a   is  a  constant  of  proportionality  which  is  used  to  determine 
execution times.    is a property of the data b.

a a n/a
a  is  a  property  of  f.   a  can  be  determined  from  exponential 
regression of f for different sizes of sets G on various b.

TG TORIGINAL T G =  na Time to compute an application of f on G.

q k n/a Number of sets in the partition of G

Gi Si n/a The i-th set of the partition of G.

m m m=
n
q

Number of points in each set in the partition of G.

TGi not defined T Gi = ma
Time to compute a application of f on Gi

w x w=
E  ∣ f Gi ∣ 

m
Expected value of the fraction of points returned by an application 
of f.

r r r=ceil −
log q
logw

 Maximum number of stages of the multistage method.

p p n/a Number of processors.

l l l= floor −
log q−log p

log w


Number of stages where the number of computational modules is at 
least p.

TMP TMULTISTAGEPARALLEL T MP = [ r
q

p1−w 
]ma Time to execute the multistage applications up to a proportionality 

factor which is fixed given experimental data.

   =

q
1−w

q
p1−w

r−l

Speedup  of  computing  f(G)  versus  a  single  iteration  of  our 
multistage method given a fixed m

   =

q
p1−w

q
p1−w

r−l
Processor utilization.



2. METHOD
In  this  section  we  describe  the  procedure  to  optimize  the 
performance  of  the  divide  and  conquer  method.   There  is  a 
continuum of possibilities for this optimization.  The researcher 
may wish  to  receive  the  results  with  a  minimum of  execution 
time or may wish to minimize the cost of the analysis in terms of 
service units.  The researcher may also wish to select a point on 
the  continuum  from  minimum  execution  time  to  minimum 
compute service units.

The question can be stated as: Given experimental data we wish 
to  analyze  at  a  predetermined  resolution  and  some  available 
compute resource with max-p processors,  how do we determine 
the optimal run variables?  Using the terminology described in 
Section 1.3.1 and summarized in Table 1.3.1.1 the problem can 
be stated precisely:  Given max-p,  b, a,  f, and  G: how does one 
determine the optimal number of processors p and the number of 
sets  q or equivalently, the size of the each  Gi,  m?  To minimize 
execution time, one might naïvely assume to use all the available 
processors, by setting both p and q to max-p, yet it will be shown 
that  this  is  quite  wasteful  of compute  resources.   To minimize 
cost in service units, one may assume to set  p to 1, but  m must 
still  be determined.   It  will  be shown that for a small  increase 
over the minimum cost, a significant improvement in execution 
time can be obtained.

Our  optimization  procedure  begins  in  Section  2.1  with  the 
estimation of the variable w.  Given this result, we show how to 
optimize the non-iterative multistage case in Section 2.2 and the 
iterative multistage case in Section 2.3.  For instructive examples 
we have chosen seven data sets obtained from AUC experiments. 
These are taken from a variety of researchers' analyses of DNA 
and  proteins.   For  G we  use  a  grid  of  129,600  points 
representative  of  the  parameter  space  appropriate  to  each 
experiment.  For our examples, we used values of m in the range 
of 25 to 650.   Values  of  m smaller  than 25 result  in  Gi being 
trivially  small  and  as  the  number  of  points  in each  Gi get  too 
small, the overall performance suffers.  Values of  m larger than 
650 result in  Gi   that exceed the available memory of individual 
processors to compute a single application of f.  These values are 
for our experience with AUC data.  The investigator applying the 
method  to  other  problems  should  determine  the  ranges 
appropriate to their problems.

2.1 Estimating w
Recall from Section 1.3.1 and Table 1.3.1.1 that w is the expected 
fraction of points returned from an application of  f  on a set  Gi. 
This important variable determines the total number of stages  r. 
As  m increases,  w and  r  decrease.   The  time  to  compute  an 
application of f to Gi  is minimized with small m, but the number 
of stages  r required increases dramatically.  To demonstrate this 
fact we sampled applications of f to Gi on our seven example data 
sets with varying m. For each sample we computed w and r.  The 
results are shown in Figures 2.1.1 and 2.1.2.

An estimate for w as a function of m is dependent on f, G, and b. 
Given the dependencies and a priori knowledge of the range of 
interest of m, it is a simple matter to select a set of equidistant 
points in the range of m.  For each point in the selected set, create 
a few sets  Gi. and apply f to each, giving an average w(m).  We 
have obtained good results with approximately 3 to 5 such sets. 
From the w(m) computed, w(m) can be extended to a function on 
the range of interest of m by linear interpolation.

2.2 Optimizing: Non-Iterative Multistage
In this section we explain how to determine optimal values of m 
and  p.   Given  w(m)  described  in  Section  2.1,  we  can  then 
compute  arrays  TMP(m,p)  and  Cost(m,p),  which  contain  the 
execution times and costs, using the equations of Section 1.3.1.1 
and Table 1.3.1.1.  This is detailed in the procedure described in 
Text 2.2.1.

Figure 2.1.1:  The relationship of the size of each set m and w, 
the expected fraction of parameters returned by an 

application f.  Seven AUC example data sets were analyzed. 
As m increases the size of each Gi, increases, w decreases.

Figure 2.1.2:  The relationship of the size of each set m and 
the number of stages required, r.  Seven AUC example data 

sets were analyzed.  As m increases, r decreases.

1.foreach m

2.   q 
n
m

3.   r  ceil −
logq

logw m 


4.   foreach p

5.      T MPm , p  [r
q

p1−w m
]ma

6.      Cost m, p  p⋅T MPm , p

Text 2.2.1:  The procedure for computing optimal m and p 
for a given non-iterative multistage problem.



Note that we set =1 in step 5 for unitless computations of TMP. 
In practice, we “normalize” the matrix TMP by dividing all the TMP 

by  the  minimum  value  found  in  the  matrix.   We  similarly 
“normalize”  Cost(m,p) by dividing by the minimum cost found. 
To  determine  actual  computational  times,  the  applications  of  f 
should  be  timed  on  the  target  system  to  compute   .   Once 
TMP(m,p) and Cost(m,p) have been computed it is a trivial matter 
to  search  these  matrices  for  the  minimum  execution  time  and 
minimum  cost.   To  provide  the  user  with  an  intuitive  choice 
between these limits, we produce a continuum of costs from the 
minimum  computational  cost  to  the  cost  of  the  minimum 
execution time.  This is achieved by creating equivalence classes 
containing points (m,p) with  identical  or nearly  identical  costs. 
Each equivalence class is assigned the minimum execution time 
of  all  points  within  the  equivalence  class.   The  procedure  is 
shown in Text 2.2.2.

The  procedure  of  Text  2.2.2  produces  three  arrays  which  are 
functions of  cost  c:   BestTime(c)  is  the  best  relative  execution 
time  for  cost  c,  Bestm(c)  is  the  associated  value  of  m, and 
Bestp(c) is the associated value of p.  There is no guarantee after 
this procedure that  BestTime(c) is a strictly increasing function. 
Increasing  the  divisor  of  step  3 (we  used 1000)  alleviates  this 
issue.  In practice, steps 3 through 9 of Text 2.2.2 can be inserted 
after step 6 of Text 2.2.1.  For illustration of these procedures we 
processed  our  example  AUC datasets  and  plotted  BestTime(c). 
Since  we  “normalized”  TMP(m,p)  and  Cost(m,p)  the  minimum 
time  and  minimum  cost  are  both  1.   Interestingly,  we  had 
improved execution times for relative costs as high as 10 times 
the minimum cost, but with insignificant improvement in relative 
time.   For  this  reason  we  clipped  the  relative  cost  at  2. 
Importantly,  paying the  cost  of many service  units did little  to 
improve  the  execution  time.   Also,  paying  a  minor  10  or  20 
percent additional cost over the minimum significantly improves 
the  execution time.   The relative  cost  versus  p shows  a linear 
scaling.  The divide and conquer method has been shown to be 
weakly  scalable,  so  to  make  good  use  of  more  processors,  a 
larger  G  is needed.  The results are shown in Figures 2.2.1  and 
2.2.2.

2.3 Optimizing: Iterative Multistage
The iterative  method,  which provides  the highest  quality result 
introduces  the  further  complication  that  the  entire  multistage 
procedure  is  repeated  until  a  fixed  point  is  reached.   The 
iterations vary as a function of m.  We computed the number of 
iterations required for the multistage divide and conquer method 
to converge for each of our seven AUC experiments.  We used 
values of m in {24,36,54,121,182,273,410,614}.  The results are 
shown in Figure 2.3.1.

Notice  that  the  minimum  number  of  iterations  is  two.   The 
iterative method requires a minimum of two passes to determine 
convergence.  Small m require more iterations, which we believe 
makes intuitive sense in the following way: since each Gi “sees” 
less  of  the  solution  space,  it  can  only  return  an  approximate 
result.  These approximate results will be brought together at the 
end of the multistage process and must be unioned back into each 
original  Gi during the  subsequent  iteration.   This  “expands the 
sight”  of  each  Gi on  each  subsequent  iteration,  allowing  the 
quality of the result to improve.

Figure 2.2.2:  Relative cost versus p for seven AUC 
experiments.

Figure 2.2.1:  Relative cost versus relative time for seven 
AUC experiments.

1.foreach m

2.   foreach p

3.      c  floor 
Cost m , p

1000
⋅1000

4.      if not defined BestTimec

5          BestTimec  ∞

6.      if BestTimec  T MPm , p

7.         BestTimec  T MPm , p

8.         Bestmc  m

9.         Bestpc  p

Text 2.2.2:  The second step of the procedure for computing 
optimal m and p for a given multistage non-iterative 

problem.  The division and multiplication by 1000 in step 3 
controls the resolution of the costs.



To apply  the  cost  of  iterations  we must  modify  our  execution 
time  equation  by  including  two  factors.   One  factor  is  the 
multiple of the number of iterations.  We define  I(m) to be the 
number of iterations required for m.  Since I(m) cannot be known 
without actually performing the full iterative multistage process, 
a record should be kept  of prior  iterative  runs to  be used as a 
predictor of future runs.  The second factor increases the size of 
each Gi in subsequent iterations due to the union of the previous 
multistage  result.   The  number  of  points  added  to  each  Gi is 
approximately the number of points we expect in the final result,
n⋅wn .   Due  to  time  and  memory  restrictions,  w(m)  is  only 

computed for values  of  m << n.  We therefore let  mMAX be the 
largest  value of  m  for which  we have a  w(m) computed.   The 
estimated number of points added to each  Gi in the subsequent 
stages becomes  m MAX⋅wmMAX  .  With these additions, we can 
state the equation for the time to execute the iterative multistage 
parallel divide and conquer method TIMP as follows:

T IMP = [ r
q

p1−wm 
] I mmmMAX w mMAX 

a  (2.3.1)

This  equation  is  substituted  for  TMP in  the  procedures  of  Text 
2.2.1 and 2.2.2.  

As an example  computation of  I(m)  for  AUC experiments,  we 
take  an average of the  7 experimental  systems  iteration counts 
and provide an I(m) which is a linear interpolation of the average 
values.  We force  I(m) to be a decreasing function of  m based 
upon empirical  observations and our  belief  that  larger  systems 
should  iterate  fewer  times.   It  is  difficult  to  predict  the  actual 
number  of  iterations  a  specific  analysis  will  require.   For 
example,  if by chance,  one of the sets  Gi of our partition of  G 
contains  the  best  fit  solution,  the  system will  converge  in  the 
minimum two iterations.

2.4 Optimization Recipe
In summary, the procedure to optimize the processing of a divide 
and  conquer  analysis  is  as  follows:   We  start  with  our 
experimental  data  b,  a  desired  resolution  G,  and  a  compute 
resource of  max-p processors.   We estimate  w by analysis of a 
random sampling of  Gi for a range of  m as described in Section 
2.1.   For  the  non-iterative  multistage  method,  we  apply  the 
procedures  of  Section  2.2  in  Texts  2.2.1  and  2.2.2.   For  the 
iterative  multistage  method,  we  must  also  have  the  iteration 
estimation function I(m) in order to apply the procedures of Texts 
2.2.1  and 2.2.2 modified by Equation 2.3.1.   These procedures 
compute  the  data  necessary to  display an optimal  relative  cost 
and relative execution time graph.  From the graph, the user can 
choose an optimal cost  and an associated execution time.   The 
user's choice determines the optimal values of m and p needed to 
submit the job to the compute resource.

3. CONCLUSION
Solving non-negative least squares is an important problem in the 
physical sciences.  Analysis of AUC experiments relies on large 
non-negative  least  squares  problem  solving.   The  divide  and 
conquer  method  can  solve  large  non-negative  least  squares 
problems in a parallel environment, but requires careful selection 
of run variables to achieve optimal results in terms of minimum 
execution time or minimum service unit cost.  Naïve selection of 
these parameters can result in an extreme waste of service units 
or excessive computational time.  Our procedure is suitable for 
computation  on  a  workstation  prior  to  job  submission.   The 

procedure computes the run variables to achieve optimality along 
a  continuum  of  costs.   It  applies  to  both  the  multistage  and 
iterative  multistage  divide  and  conquer  non-negative  least 
squares  method.   This  method  has  been  validated  on  multiple 
datasets from AUC experiments.
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