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Abstract

A computational approach for fitting sedimentation velocity experiments from

an analytical ultracentrifuge in a model-independent fashion is presented. This

chapter offers a recipe for obtaining high-resolution information for both the

shape and the molecular weight distributions of complex mixtures that are

heterogeneous in shape and molecular weight and provides suggestions for

experimental design to optimize information content. A combination of three

methods is used to find the solution most parsimonious in parameters and

to verify the statistical confidence intervals of the determined parameters.

A supercomputer implementation with a MySQL database back end is

integrated into the UltraScan analysis software. The UltraScan LIMS Web portal

is used to perform the calculations through a Web interface. The performance

and limitations of the method when employed for the analysis of complex
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mixtures are demonstrated using both simulated data and experimental data

characterizing amyloid aggregation.
1. Introduction

Many of today’s biomedical research projects studying the molecular
basis for cancer and other diseases focus on the understanding of dynamic
interactions among molecules implicated in the disease process. Analytical
ultracentrifugation (AUC) offers an array of powerful tools to study such
interactions. AUC experiments make it possible to observe macromolecules
and macromolecular assemblies in solution, that is, in a physiological envi-
ronment unconstrained by crystal packing forces or an electron microscope
grid. Systems can be studied under a wide range of concentrations and buffer
conditions, and the methods are applicable to a very large range of molecular
weights, extending from just a few hundred daltons to systems as large as
whole virus particles. The range of applications is further extended by several
detection systems, which include absorbance optics for ultraviolet (UV) and
visible wavelengths, Rayleigh interference optics, fluorescence intensity
optics, turbidity, and schlieren optics. In addition, new detectors are cur-
rently being developed, such as multiwavelength absorbance, small angle light
scattering, and Raman spectroscopy detectors. AUC experiments, in con-
junction with sophisticated numerical analysis, can yield a wealth of informa-
tion about a wide range of hydrodynamic and thermodynamic properties
of the macromolecules under investigation, including molecular weight,
association (Keq) and rate (koff) constants, sedimentation coefficients (s), diffu-
sion coefficients (D), and shape factors ( f/f0), as well as partial concentra-
tions of individual solutes. These parameters provide insight into
macromolecular organization and function, oligomerization characteristics,
conformation, binding stoichiometry, and sample composition. This chap-
ter describes new computational tools and algorithms whose goal it is to
identify hydrodynamic parameters with the highest possible resolution.

During an AUC experiment, a sample of interest is dissolved in a buffer,
and the solution is placed into a sector-shaped cell and sedimented in a
centrifugal force field. The centrifugal force is adjusted according to the size
of the molecules under study and can be as high as 260,000 g, permitting
resolution of components with a broad molecular weight range. During the
experiment, differently sized and shaped components in the sample will
sediment away from the rotor center at rates proportional to their molecular
weight divided by their shape, creating a moving boundary with a distinct
concentration profile that is dependent on s and D of each solute. Depend-
ing on optical system, data are collected every few seconds or minutes by
monitoring the change in total concentration over the entire radial domain.
An example of a multicomponent data set obtained with UV absorption



Figure 4.1 Experimental AUC data of a multicomponent mixture.The x axis reflects
the radius, and the yaxis represents the relative concentration.The directionof sedimen-
tation is from left to right; each trace represents a single time point in the experiment.
In this example, multiple components can be distinguished bymere visual inspection of
the profile.
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optics is shown in Fig. 4.1. Each component in the mixture contributes a
partial concentration to the observed concentration profile. In order to
analyze these data, one has to identify the contributions of individual
components to the overall concentration profile. This process involves
modeling the partial concentration, the sedimentation, and the diffusion
transport of each solute over time and requires proper accounting of noise
contributions. In the case of reacting systems, such as reversibly self- or
hetero associating systems, equilibrium and rate constants need to be con-
sidered as well. The sedimentation and diffusion transport of each solute is
described by a partial differential equation (PDE), the Lamm equation
(Lamm, 1929), which can be solved at high resolution using an adaptive
space-time finite element approach for either the noninteracting (Cao and
Demeler, 2005) or the interacting (Cao and Demeler, 2008) case. Linear
combinations of Lamm equation solutions are then used to approximate the
entire concentration profile. Finding the correct parameter combinations of
partial concentration, s andD, for each solute is accomplished by solving the
inverse problem of fitting simulated finite element solutions to experimental
data. To this end, we have developed new algorithms that allow us to model
such experiments at the highest possible resolution. These algorithms are
based on first-principle biophysical descriptions and employ advanced
numerical techniques and parallel computing to accomplish this goal. Our
developments have been integrated into an open-source software package
called UltraScan (Demeler, 2005, 2008), which contains a comprehensive
range of tools to help interpret experimental data and derive aforementioned
parameters from AUC experiments.
2. Methodology

The computational task of analyzing experimental data by building a
model that best represents the experimental information can be separated
into four phases: (1) initialization—determining the appropriate parameter
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range to be searched; (2) two-dimensional spectrum analysis (2DSA)—
calculating a linear combination of basis functions that covers the parameter
space with subsequent linear least-squares fitting, with simultaneous elimi-
nation of systematic noise; (3) refinement—parsimonious regularization by
genetic algorithm analysis (GA) or optionally nonlinear fitting with a
discrete model; and (4) Monte Carlo analysis (MC)—statistical evaluation
of the results and attenuation of stochastic noise contributions. In addition,
a careful design of the experiment is an important consideration for the
success of the experiment. A large range of different approaches exist
to evaluate experimental sedimentation data, each with its own advantages
and limitations on information content. Of those, model-independent
approaches such as the van Holde–Weischet analysis (Demeler and van
Holde, 2004) and the dC/dt method (Stafford, 1992) are preferable for
the initialization steps; subsequently, direct boundary modeling by finite
element solutions of the Lamm equation is desirable because unlike model-
independent methods that provide only s-value distributions and, in some
cases, partial concentrations, finite element solutions permit simultaneous
determination of the sedimentation and diffusion coefficients of each spe-
cies, as well as determination of partial concentrations. When s and D are
available, additional information can be derived, including molecular
weight and frictional parameters by applying the Svedberg equation,
which relates s and D to the molecular weight of the particle [see
Eq. (4.1), where R is the gas constant, T is the temperature, r is the density
of the solvent, and s, D, M, and �v are the sedimentation and diffusion
coefficients, the molecular weight, and the partial specific volume of the
solute, respectively]. Once s and D have been determined, a frictional ratio,
f/f0, can be calculated as well according to Eq. (4.2). This ratio provides a
convenient parameterization for the shape of the molecule. The lower limit
of 1.0 can be interpreted as a spherical molecule, whereas values greater than
1 indicate increasing nonglobularity. Values up to 1.3 are common for
mostly globular proteins, whereas values between 1.8 and 2.5 are consistent
with elongated, denatured, or intrinsically disordered proteins. Values larger
than 2.5 can be found for very long molecules such as linear DNA fragments
or long fibrils. Solving the inverse problem of fitting a model to the
experimental data can be accomplished with a nonlinear least-squares fitting
routine to arrive at the best-fit parameter set for the nonlinear parameters to
be searched. However, this approach is suitable only for simple cases, where
at most one or two solutes are present. The reason for the failure of this
approach with a larger number of species is related to the complexity of the
error surface, which increases when an increasing number of solutes and
parameters is modeled and causes the optimization algorithm often to stall in
a local minimum, preventing convergence at the global minimum. This
chapter describes three alternative approaches addressing this issue, and each
approach provides a complementary description of the solution space.
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These approaches can be linked to provide an optimal description of data.
Before detailing our approach, we should mention the importance of high-
quality data. No amount of sophisticated analysis can compensate for poor
quality of primary data and all efforts should be taken to eliminate unneces-
sary noise from data. The precision of parameter estimation is inversely
correlated with the experimental noise present in primary data. It is there-
fore important that systematic noise contributions resulting from instrument
flaws are accounted for and that stochastic noise contributions are attenu-
ated. It has been shown previously that systematic noise contributions such
as time- and radially invariant noise can be eliminated effectively using
algebraic means (Schuck and Demeler, 1999) and that the effect of stochas-
tic noise contributions can be reduced using MC methods (Demeler and
Brookes, 2008). Experimental design considerations can further improve
noise characteristics, for example, by using intensity measurements instead
of absorbance measurements, stochastic noise is reduced by a factor of

ffiffiffi
2

p
by not subtracting the reference signal. This subtraction leads to the convo-
lution of two stochastic noise vectors and an increase in the stochastic noise:
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Step 1. Selecting the appropriate parameter space. The complexity of the
evaluation can be reduced if a subspace of reasonable parameter values can
be obtained through model-independent approaches. The enhanced van
Holde–Weischet method (Demeler and van Holde, 2004) is ideally suited
for this purpose, as it provides diffusion-corrected s-value distributions from
sedimentation velocity experiments. The diffusion coefficient, which is
required for the solution of the Lamm equation, can be initially estimated
by parameterizing the shape function using the frictional ratio, f/f0, which is
a measure of the globularity of a particle [Eq. (4.3), where N is Avogadro’s
number, k is the frictional ratio f/f0, Z is the viscosity of the solvent, and all
other symbols are the same as in Eq. (4.1)]. A reasonable assumption can be
made that the shape of the particle ranges somewhere between spherical
( f/f0 ¼ 1.0) and rod shaped ( f/f0 � 4.0) for most solutes. Given the limits
from the s-value range determined with either the van Holde–Weischet or
the dC/dt method, and the assumption on particle shape, it is now possible
to define the limits of a two-dimensional parameter space over s and f/f0:

D ¼ RT N18p k�ð Þ3=2 s�n
2 1� �nrð Þ
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Figure 4.2 Two-dimensional grid over s and f / f0. Each node point represents a term
in the linear model, whose amplitude is determined by the 2DSA analysis through
least-squares fit usingNNLS.
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Step 2. Evaluating the basis functions over all parameters and eliminating
systematic noise. A two-dimensional grid with discrete s and f/f0 parameter
combinations covering the s-value range and the f/f0 range is constructed.
Such a grid is shown in Fig. 4.2. Here, each grid point represents a complete
finite element simulation over both space and time, as well as a solute in the
delimited parameter space. The solutes at each grid point are simulated at
unity concentration and their contributions are summed to obtain the final
concentration profile. The amplitude of each term in the sum represents the
relative contribution of each solute. The fitting problem is thus reduced
from a nonlinear fitting problem to a linear least-squares approach
[Eq. (4.4)] that only requires determination of the amplitudes of each grid
point. In this approach,M is the model [Equation (4.5)], which is compared
to experimental data b over all time and radius points r and t. cl,m represents
the amplitude of each grid point in Fig. 4.2, and L is the solution of the
Lamm equation for a single, nonreacting solute (Brookes and Demeler,
2006; Cao and Demeler, 2005). The fit is accomplished with the nonnega-
tively constrained least-squares fitting algorithm called ‘‘NNLS’’ (Lawson
and Hanson, 1974). This approach will result in positive amplitudes only, or
zero, if a component is not present in experimental data. There are several
considerations to be made relating to computer memory requirements. The
finite element solution at each grid point in Fig. 4.2 requires approximately
800–1000 radial points and 50–500 time points, depending on the experi-
ment. It is clear that fitting a high-resolution grid will require excessive
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amounts of memory. To circumvent this significant problem, we employed
a divide-and-conquer approach, termed the multistage two-dimensional
spectrum analysis, which repeatedly moves the initial low-resolution grid
by small increments △s and △f/f0 until the entire parameter space is
covered. This approach accomplishes a higher resolution analysis without
overwhelming available memory and has been shown to provide a serial
speedup over standard NNLS and parallelizes with no excess computation
and negligible communications overhead (Brookes et al., 2006). Scalability
testing of 2DSA has shown a linear speedup from 4 to 512 processors. We
formulated an equation for processor utilization (Brookes et al., 2006),
which predicts the optimal number of processors to guarantee a minimum
processor utilization for a specific problem size. We currently use this
method of computing the number of processors required for a grid job
submission by targeting 80% processor utilization for problems without
time-invariant noise and 70% processor utilization for better speedup on
the more computationally intensive time-invariant noise calculation. As a
consequence, our implementation achieves the best quality of results with-
out wasting computational resources on a large cluster. Since the solution is
sparse, only a few parameters are returned from a coarse grid. Typically, we
apply 100–300 grid movings of a 10 � 10 grid to obtain a resolution that is
commensurate with the resolution of the analytical ultracentrifuge. Fewer
grid movings can be used if the van Holde–Weischet analysis reports a
narrow range. Solutes with positive amplitudes from different grids are then
unioned with each other to form new grids with a maximum number of
solutes equivalent to that of a single initial grid (generally less than 100
solutes). Each unioned grid represents a single stage in the multistage process
and is refitted until all grids have been successively unioned into a single
grid. An iterative variation of this algorithm unions the final grid with all
initial grids and repeats the 2DSA analysis until the solution is converged.
A stable solution can be reached for cases where time- and radially invariant
noise is not considered, which is equivalent to performing the solution
containing all grids in a single iteration. For cases where invariant noise
components are calculated, three to four iterations generally converge to a
mostly stable solution. Our approach is parallelized with MPI on the level of
each grid calculation, and the relevant UltraScan modules have been
deployed on the NSF TeraGrid and on TIGRE [the Texas Internet Grid
for Research and Education project is a computational grid that integrates
computing systems, storage systems and databases, visualization laboratories,
displays, instruments, and sensors across Texas (http://www.hipcat.net/
Projects/tigre)] sites (Vadapalli et al., 2007). Simultaneously to the parame-
ter determination, we use the 2DSA to algebraically extract the systematic
noise contributions that result from imperfections in the optical system or
instrument (Schuck and Demeler, 1999). After convergence, the vector of
time-invariant noise contributions is subtracted from experimental data,

http://www.hipcat.net/Projects/tigre
http://www.hipcat.net/Projects/tigre
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yielding a data set only perturbed by Gaussian random noise. At that point,
a subset of the initial two-dimensional parameter space is obtained, and
relative concentrations for all solutes have been determined. Although
the solution provides a good qualitative representation of experimental
data, the solution cannot be regarded as unique at this point because it is
overdetermined and subject to degeneracy. In this solution, low-frequency
false positives are common—they result from the random noise present in
experimental data and because the true solutes are not necessarily aligned
with the fitted grid. Additional processing is required to further refine the
2DSA solution:

Min
Xr

i¼ 1

Xt

j¼ 1

Mij � bij
� �2 ð4:4Þ

M ¼
Xsmax
l¼ smin

Xfmax
m¼ fmin

cl;mL sl;D sl; kmð Þð Þ: ð4:5Þ

Step 3. Parameter refinement and regularization. We found that parameter
refinement of values obtained with the 2DSA is best achieved with a genetic
algorithm implementation (Brookes and Demeler, 2006). We can adapt
Occam’s razor for our problem, which can be stated as follows: the most
parsimonious solution capable of producing nearly the same residual mean
square deviation (RMSD) is the preferred solution. Because the solution
obtained in Step 2 is overdetermined and not unique we need to determine
the most parsimonious solution. Implementation of the genetic algorithm
analysis is described in detail in Brookes and Demeler (2006). Briefly, an
evolutionary process is used to optimize the solution from a pool of
multiple, individual solutions. The individual solutions are derived from
the 2DSA analysis. Here, each new solution contains exactly one solute for
each solute determined previously in the 2DSA analysis. Each solute is
initialized randomly with an s and f/f0 pair drawn from a symmetrical,
rectangular region defined by a small, user-selected △s and △f/f0 range
surrounding each solute determined in the 2DSA analysis. If two regions
overlap, one or two new ranges are defined in which a new, additional
solute is placed (see Fig. 4.3A). All new solutions are then allowed to evolve
to the best-fitting parameter combination according to the rules defined in
the GA. Random number generators perform mutation, crossover, dele-
tion, and insertion operations on the parameter combinations in order to
generate new individuals for the next generation. The overriding selection
criterion is the RMSD of a particular solution. Several rules favor survival of
the fittest solution. To guard against loss of parameter diversity, we coevolve
multiple demes, each consisting typically of 100 individual solutions, and
permit only limited parameter migration between demes. Regularization is
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Figure 4.3 GA initialization (A) and GA analysis result (B). (A) Initializing regions
formed around each solute determined in the 2DSA analysis. Each solute is shown by a
rectangle drawn in a gray level corresponding to the partial concentration of the
solute. Regions are clipped at a frictional ratio equal to unity. Overlapping regions are
subdivided and a new GA solute is placed into the subdivided region. (B) GA analysis
results from the initialization shown inA, indicating not only a successful parsimonious
regularization, but also amore consistent tendencyof frictional ratios.
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achieved by penalizing the fitness of a particular solution in direct propor-
tion to the number of solutes represented in this solution (Brookes and
Demeler, 2007). In contrast to Tikhonov and maximum entropy regulari-
zation, we term this approach ‘‘parsimonious regularization’’ because of its
ability to find the smallest number of necessary, discrete solutes to describe a
given experimental system (see Fig. 4.3B). MPI is used to parallelize on the
level of the deme calculation, with each deme occupying a different pro-
cessor. This approach is embarrassingly parallel and scales linearly on all
platforms. Individual generations progress asynchronously to prevent pro-
cessor idling. Furthermore, we can choose to terminate evolution early
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when no further improvement in solutions is occurring. Importantly, we
note that the GA analysis without 2DSA initialization will achieve the same
result, although at much higher computational cost. Our strategy of linking
2DSA with GA has reduced the overall computational task by over 200-fold
for the inverse problem of AUC experimental data fitting by drastically
reducing the parameter space to interesting regions only and thus simplifying
the parameter search.

Step 4. Statistical evaluation of the results. After Step 3, a discrete, parsimo-
nious solution is obtained that represents the best fit to experimental data
without any sacrifice in goodness of fit. Any uncertainty associated with the
determined parameters is solely a result of Gaussian noise in the experimen-
tal observations. In order to determine the confidence interval on each
parameter, a Monte Carlo analysis is performed. In this approach, synthetic
noise of the same quality as observed in original experimental data is added
to the best-fit solution from Step 3, and new data are fitted again with the
procedure outlined in Step 3. This is typically repeated 50–100 times or
until a statistically relevant description of the solution space is achieved.
Each time, a slightly different result is generated, resulting in a distribution
of parameter values for each parameter. These distributions can now be used
to derive standard deviations for all parameters determined in Step 3, and a
statistically reliable confidence interval can be assigned to the s andD values,
molecular weights, frictional ratios, and partial concentrations from each
solute identified in the previous steps. Monte Carlo analysis also achieves a
second goal: When a stochastic signal is added to a solution, the amplifica-
tion of the noise signal proceeds with a factor of

ffiffiffi
2

p
while the intrinsic signal

of the sample contained in the analyzed system is amplified linearly. As a
result, the Monte Carlo analysis attenuates the effect of stochastic noise on
the solution, which can be quite apparent when the 2DSA analysis is
performed at high resolution, where the analysis often finds false positives
at the high end of the frictional ratio spectrum. An additional improvement
in results can be obtained if signals from a high-speed and low-speed
measurement are combined and the same sample is analyzed in a global
fashion by combining multiple speeds in the GA analysis. In the high-speed
experiment, a maximum signal from the sedimentation coefficient is
obtained due to the large centrifugal force. However, sedimentation is
rapid and the time allowed for diffusional boundary spreading is minimal.
As a consequence, sedimentation coefficients in a high-speed experiment
can be determined with high precision, whereas diffusion coefficients are
often unreliable. Because of the relationships among s, D, and molecular
weight shown in Eqs. (4.1) and (4.2), any lack of precision in the diffusion
coefficient translates into a lack of precision of molecular weight and shape.
By measuring the same sample also under low-speed conditions, sedimen-
tation is much slower, and the sample has sufficient time to diffuse before
being pelleted at the bottom of the cell. This provides a much improved



Analysis of Mass and Shape Heterogeneity 97
signal on the diffusion transport and, as a consequence, on the accuracy with
which the shape of the solute can be determined. Constraining s to the 95%
confidence region of the sedimentation coefficient from each solute deter-
mined in the high-speed experiment, it is now possible to converge only on
the diffusion coefficients using low-speed data.
3. Job Submission

Our methods have been implemented on a parallel computing plat-
form in the UltraScan software package (Demeler, 2008). We have devel-
oped modules that allow submission to compute resources. These resources
are local or remote clusters and grid-based supercomputers. High-perfor-
mance computers are generally dedicated to specific jobs and operate in a
batch mode maintained by a queue mechanism. We use the Globus-based
TIGRE software stack (Vadapalli et al., 2007), a grid middleware environ-
ment developed by HIPCAT (Consortium for High Performance Com-
puting across Texas, http://www.hipcat.net), to communicate with the
various compute resources. The 2DSA and GA processes are submitted by
the user through a Web interface to the grid. Monte Carlo analysis can be
added to each method. Analysis is performed on a target cluster and when
the job completes, the results are e-mailed back to the researcher. Our
submission scheme is shown in Fig. 4.4. Submission is performed from a
Web page shown in Fig. 4.5. When the user submits a job, the Web server
sends the user’s request to us_gridpipe, which is a named pipe. This is a
special type of file that simply holds written data until they are read. The
PERL (Wall et al., 2000) script us_gridpipe.pl daemon, a program that is
always running in the background, reads from us_gridpipe, manages a global
list of jobs, and controls startup of TIGRE jobs. Upon receipt of the
researcher’s job request, the us_gridpipe.pl daemon will first execute
us_gridcontrol, a C++ program, to collect experimental data from the
LIMS database in preparation for job execution. When us_gridcontrol
completes, it informs the us_gridpipe.pl daemon via the named pipe that
all of the experimental data have been extracted from the database and
placed into a file on the disk. The us_gridpipe.pl daemon inserts the job
request into its list of TIGRE jobs and begins execution of the PERL script
us_tigre_job.pl, which controls the job execution. TIGRE resources are
shared and it is important to select the number of processors carefully. The
authors have developed a formula to compute the optimal number of
processors to achieve a specific processor utilization (Brookes et al., 2006)
and this computation is performed for TIGRE jobs. Once the number of
processors is known, us_tigre_job.pl sends experimental data and user’s
Web request parameters to the user-selected cluster and submits the job to

http://www.hipcat.net
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the cluster’s queue. The execution scheduling is then controlled by the
target cluster utilizing cluster-dependent queue control software. The clus-
ter’s queue control mechanism may be PBS (Portable Batch System), LSF
(Load Sharing Facility), or some other queue control software. The Globus
component of the TIGRE middleware hides the differences between the
cluster’s queue control specifics by providing a uniform application inter-
face. The TIGRE job is monitored until completion. Upon completion,
us_tigre_job.pl retrieves result data from the target cluster, e-mails the
results to the researcher, and informs the us_gridpipe.pl daemon that the
TIGRE job is finished. The us_tigre_job.pl script also collects all run-time
statistics and stores them in a database. At this point, us_gridpipe.pl deletes
the completed job from its job list and us_tigre_job.pl exits. The us_grid-
pipe.pl daemon also accepts requests to obtain information about the job
list, which is available for viewing directly from theWeb interface. The user
imports the e-mailed results into the UltraScan software where the model
can be visualized in 2D and 3D by a C++ GUI module of UltraScan,



Figure 4.5 USLIMSjob submissionWebpage for 2DSAanalyses.The user selects anal-
ysis parameters, such as s-value range, f/f0 range, number of grid movings, and Monte
Carlo iterations, and selects systematic noise correction options. Under advanced
options, regularization, radially invariant noise, iterative fitting, and meniscus fitting
can be selected. At the bottom, a list of clusters is offered for submission of a job, and
relevant system status information is provided.
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and residuals and systematic noise contributions can be displayed and
processed (see Fig. 4.6). All required parallelization modules are available
for the Linux operating system and can be downloaded for free from the
UltraScan Web site (http://www.ultrascan.uthscsa.edu).

http://www.ultrascan.uthscsa.edu
http://www.ultrascan.uthscsa.edu


Figure 4.6 Visualization tools from the UltraScan GUI used to display models
obtained in the supercomputer calculation, showing residual bitmap, residuals, experi-
mental data and model overlay, and 3D solute distribution ( f/f0 vs s).The model shown
here represents the global GAanalysis of Example1.

100 Borries Demeler et al.
4. Results

Using simulated and experimental example systems, we demonstrate
here the capability of our method to resolve heterogeneity in mass and shape
for complex systems and then explain additional insights gained from these
improved methods. The first example shows a simulated data set with noise
equivalent to noise produced in a well-maintained Beckman Optima XL-A
instrument. Using simulated data allows us to determine the reliability of the
method by comparing the fitting results with known target values used for
the simulation. The second example explores the ability of our methodol-
ogy to characterize the heterogeneity observed in the aggregation of amy-
loid-forming proteins and use it to detect changes in shape and mass induced
by a ligand thought to interrupt the formation of larger amyloid aggregates.
4.1. Example 1: Simulated five-component system

This example presents the result of a four-step analysis on a simulated
aggregating five-component system of a 25-kDa monomeric protein that
is oligomerizing irreversibly up to a hexadecameric association state. During
oligomerization, the protein changes frictional ratio. The target solute
properties are listed in Table 4.1, the molecular masses of the simulated



Table 4.1 Monte Carlo results from a global genetic algorithm optimization using
multispeed dataa

Solute
Molecular
mass (kDa)

Partial
concentration Frictional ratio, f/f0

1 25.08 (24.75,

25.21) [25]

0.0994

(0.0980,0.101)

[0.1]

1.19 (1.187,

1.206) [1.2]

2 49.54 (49.08,

50.58) [50]

0.100 (0.987,

0.102) [0.1]

1.39 (1.386,

1.408) [1.4]

3 100.7 (99.28,

102.3) [100]

0.102 (0.0983,

0.102) [0.1]

1.61 (1.59, 1.62)

[1.6]

4 204.5 (196.8,

207.4) [200]

0.0992 (0.0981,

0.100) [0.1]

1.83 (1.78, 1.84)

[1.8]

5 399.1 (387.7,

409.3) [400]

0.100 (0.0998,

0.101) [0.1]

2.00 (1.96, 2.03)

[2.0]

a Results demonstrate remarkable agreement with the original target model. Parentheses: 95% confi-
dence intervals; square brackets: target value. All values are rounded off to three or four significant
digits. In all cases, target values fall within the 95% confidence intervals of the predicted values.
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solutes are 25, 50, 100, 200, and 400 kDa, and the corresponding frictional
ratios are 1.2, 1.4, 1.6, 1.8, and 2.0, simulating an end-to-end aggregation
event. Initially, the system is simulated at 60 krpm with 60 scans equally
spaced over 4 h and is simulated over a 1.4-cm column length. The same
system is then simulated at 20 krpm for 30 scans equally spaced over 23.3 h.
Resulting data are fitted to ASTFEM solutions of the Lamm equation (Cao
and Demeler, 2005) using first the 2DSA (see Fig. 4.7), which was initi-
alized with the enhanced van Holde–Weischet analysis (Demeler and van
Holde, 2004)(suggesting a fitting range of 2–12 s, data not shown), and
frictional ratios were selected to range between 1 and 3. The 2DSA analysis
for both experiments resulted in a solute distribution where the concentra-
tion signals roughly mapped out the region of the target values, indicating a
system with 24 (60 krpm) and 21 (20 krpm) discrete solutes at different
concentrations ranging between 2.5 and 11.5 s and frictional ratios ranging
between 1 and 3. The four- to fivefold excess of the number of solutes
observed in the 2DSA analysis is a consequence of low-concentration
stochastic noise contributions and from the possible lack of alignment of
the target values with the discrete grid. In addition, the fitting system is
overdetermined, and hence a unique solution is unlikely. Results for high-
and low-speed data differed as follows. First, for 60-krpm data, results
indicated a large spread of frictional values, whereas 20-krpm data showed
a much more narrow frictional range. This can be attributed to the lack of
diffusion signal in the high-speed experiment, which is needed to get
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data show more frictional ratio variation than low-speed data due to lack of a diffusion
signal. Because of stochastic noise and because solutes do not necessarily align with
target values, false positives are prevalent. Crosses indicate known target values, and
gray levels indicate relative concentration (black:most concentrated).
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accurate shape information. However, for high-speed data, a better separa-
tion resulted in more accurate determination of partial concentrations, as
individual solutes were better separated and diffusing boundaries did not
overlap as much. In the next step, output from the 2DSA analysis is used to
initialize a GA analysis in order to obtain a parsimonious regularization
(Brookes and Demeler, 2007). Results of the GA analysis are shown in
Fig. 4.8. Most notably, both low- and high-speed experiments are able to
correctly identify the number of target components by employing the
parsimonious regularization [reducing the number of solutes from
24 (60 krpm) or 21 (20 krpm) solutes in the 2DSA to 5 in the GA].
Furthermore, the same observations regarding frictional ratio range and
partial concentration made in the 2DSA analysis again apply in the GA
analysis. Because the GA analysis is not restricted to a fixed grid, which may
not necessarily align with the true target values, the GA analysis also comes
much closer to the target values without any increase in RMSD, despite
fewer parameters. Any deviation of results from the target values at this
point is caused by stochastic noise in data (assuming all systematic noise
sources have been eliminated). Hence, a Monte Carlo analysis will be able
to map out the range of possible parameter values. To improve the results
further, the signal from more precise s values and partial concentration
derived from the high-speed experiment can be combined with the
improved diffusion signal obtained in the low-speed experiment by globally
fitting both speeds to a single model using the GA analysis. In such a global
fit, sedimentation coefficients and partial concentrations will be constrained
by the high-speed experiment, whereas the diffusion signal from the low-
speed experiment constrains the frictional ratio range, generating optimal
results for a system heterogeneous in shape and molecular weight. Results
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for a global GA–Monte Carlo analysis of 60- and 20-krpm data are shown in
Fig. 4.9. As can be seen here, a very faithful reproduction of the original
target values is achieved in the global fit, and the combination of low- and
high-speed information leads to a better definition of the shape function, as
well as the partial concentration profile. For each solute, the final partial
concentrations, molecular weights, and frictional ratios, as well as each
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parameter’s 95% confidence interval, are summarized in Table 4.1. For the
global multispeed Monte Carlo analysis, we find that all parameters are
determined correctly within the 95% confidence interval.
4.2. Example 2: Amyloid aggregation

This example presents sedimentation studies on the Alzheimer’s disease-
related amyloid-b peptide. Amyloid formation (Iqbal et al., 2001) is under
intense scrutiny because of the role it appears to play in common neurode-
generative diseases such as Alzheimer’s and Parkinson’s disease (Selkoe,
2003). Amyloidogenic protein aggregates are characterized by a cross
b-sheet structure and the formation of fibrils. These fibrils (Hardy and
Higgins, 1992) and, to an increasing extent, also oligomeric species
(Barghorn et al., 2005; Klein et al., 2004) are discussed as potential causes
for disease formation. Current effort focuses on the characterization of the
mechanism causing pathologic protein aggregation. In the case of Alzhei-
mer’s disease, the aggregating entity leading to formation of the characteris-
tic amyloid plaques detectable postmortem in the brain tissue is a proteolytic
fragment of the amyloid precursor protein. Aggregation of this 39 to
42 amino acid long fragment leads to the formation of fibrils with a typical
width of about 10 nm (Holm Nielsen et al., 1999) and up to several hundred
nanometers in length. In addition to fibrillar structures, typically obtained as
an end point in incubation studies of disease-associated amyloidogenic
proteins, globular or amorphous oligomeric aggregates, ranging from
dimers to several hundred-mers, are being considered as entities involved
in the disease process (Rochet and Lansbury, 2000). Oligomeric species that
differ in size and shape and exhibit neurotoxic properties have been char-
acterized (Klein et al., 2004). Several therapeutic strategies, as well as
diagnostic methods, try to target the protein aggregates directly (Spencer
et al., 2007). In this context, the need for methods suitable to monitor the
aggregate size and shape distributions of protein solutions is evident, and our
methods promise to provide insight into the aggregation mechanism by
following mass and shape changes.

4.2.1. Sample preparation
The amyloid-b peptide (1–42) is from Bachem (Bubendorf, Switzerland)
and is dissolved in 2 mM NaOH (Fezoui et al., 2000). After freeze-drying,
aliquots are stored at –70� until use. The amyloid-b peptide (1–42) labeled
on the N terminus with fluorescent dye Oregon Green (Ab (1–42)-OG) is
synthesized by P. Henklein (Charite, Berlin, Germany). It is dissolved in
anhydrous dimethyl sulfoxide (DMSO) and stored in aliquots at –70�. The
inhibitor ligand (Kirsten and Schrader, 1997; Rzepecki, et al., 2004) is
synthesized by the group of T. Schrader (Organic Chemistry Department,
University Duisbug-Essen, Germany). A 5 mM stock solution is stored at 4�
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in 100% DMSO. In order to reduce aggregate formation, protein concen-
trations are kept as low as possible, and low salt conditions are chosen.
Aggregation mixtures containing 17.5 mM Ab (1–42) and 3.5 mM Ab
(1–42)-OG are dissolved in 10 mM sodium phosphate, pH 7.4, and 4%
anhydrous DMSO. For inhibitor studies, 200 mM inhibitor is added to
the sample. Prior to sedimentation velocity centrifugation the solutions
are incubated and slowly agitated for 5 days at room temperature. Sample
treatment as described here minimizes loss due to the formation of large
insoluble aggregates during sedimentation experiments.

4.2.2. Analytical ultracentrifugation
Sedimentation velocity experiments are performed in a Beckman Optima
XL-A using the four-hole AN-60 Ti rotor. The 300- to 400-ml sample is
filled into standard double sector aluminum center pieces using both sectors
as sample sectors. Radial scans are taken in intensity mode at a resolution of
0.002 cm. All samples are measured at 493 nm to observe end-labeled
Oregon Green and to avoid background absorbance from the aggregation
inhibitor, which absorbs strongly in the ultraviolet region. The partial
specific volume of the Ab (1–42) peptide (�n ¼ 0:7377cm3=g) is calculated
on the basis of its amino acid content by a routine implemented in Ultra-
Scan. Experimental intensity data are time-invariant noise corrected using
the 2DSA analysis. The van Holde–Weischet analysis is used to initialize the
s-value range in the 2DSA from 1 to 150 S. The frictional ratio range is
initialized between 1 and 10. 2DSA analyses are performed with 24 grid
movings with a 10-point resolution in both dimensions, resulting in a final
s-value resolution of 0.625 S and 0.042 f/f0 units. The 2DSA results are used
to initialize the GA analysis, and parsimonously regularized GA distributions
are used to initialize the GA Monte Carlo analysis.

4.2.3. Transmission electron microscopy (TEM)
Transmission electron microscopy experiments were performed by
W. Meyer-Zaika in the inorganic chemistry department of the University
Duisburg-Essen, Germany, with a Phillips CM 200 FEG instrument. After
absorbing to the holey carbon film-coated copper grids (Plano, Wetzlar,
Germany), the samples are stained negatively with a 2% (w/v) ammonium
molybdate solution.

4.2.4. Experimental results
Based on the loading concentration measured before the experiments, and
the first scan’s plateau concentration, we concluded that approximately 10%
of the dye-labeled Ab (1–42) peptide was lost during the acceleration phase.
This suggests that about 90% end-labeled Ab (1–42) remained soluble and
that our sedimentation velocity analysis will provide a representative picture
for most, but not all, of the sample. The Ab(1–42) peptide incubated at the
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Figure 4.10 GA^Monte Carlo analysis of 21 mM Ab (1^42)/Ab (1^42)-OG in 10 mM
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globular structures is observed when an inhibitor is added, favoring smaller species
with larger frictional coefficients.
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described conditions reproducibly showed sedimentation boundaries,
which indicated at least three different classes of molecular species with
the majority sedimenting with an s value around 50 S, less than 20%
sedimented with s values below 30 S, and a minor amount of material did
not sediment and simply contributed to the baseline at the applied forces
and is presumably monomer. A rotor speed of 20 krpm seemed to be
optimal for obtaining a sedimentation signal for most species present in
the mixture. The 2DSA resulted in an s-value range between 1 and 150 S
with an RMSD of 0.003 and a total concentration of 0.15 OD for the
control experiment, and 0.16 OD for the experiment where inhibitor was
added. Parsimonious regularization with the GA analysis reduced the total
number of detected species by a factor of 5. The GA results were used to
initialize a GA/Monte Carlo analysis, and the GA/Monte Carlo results are
shown in Fig. 4.10A for Ab (1–42) without inhibitor (control) and in
Fig. 4.10B for Ab (1–42) with inhibitor. In the control sample all species
appear to be mostly globular, consistent with the globular and slightly
nonglobular structures observed in TEM images shown in Figs. 4.11 and
4.12. This sample also contained a species sedimenting with 53.0 S (+1.47 S/
–1.3 S) and a frictional ratio of 1.76 (+0.15/–0.18), representing about 35%
of the material. This species appears to be more elongated, consistent with
some shorter fibrils seen in Fig. 4.12, similar to fibrils reported in the
literature (Antzutkin et al., 2002). When simulated as a long rod, this species
is consistent with an axial ratio of 16.2, a diameter of 7.4 nm, a length of
120 nm, and a molecular mass of about 4.4 � 106 Da. Networks of large
10-nm amyloid fibrils also seen in Figs. 4.11 and 4.12 and, to a much lesser



Figure 4.11 Electron micrograph of Ab (1^42) fibrils seen together with small globu-
laroligomers after 5 days of incubation agitated slowly at roomtemperature.Bar: 50 nm.

Figure 4.12 Electron micrograph of Ab (1^42) fibrils seen together with larger
globular and elongated oligomers after 5 days of incubation agitated slowly at room
temperature. Bar: 200 nm.
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degree, also in Fig. 4.13 are most likely insoluble and part of the fraction lost
during the acceleration phase. The sedimentation experiment of the sample
containing the inhibitor showed a significant decrease of the large globular
structures, which is consistent with the absence of such particles in the
corresponding TEM image shown in Fig. 4.13. The inhibitor-containing
sample also displayed a much reduced presence of large fibril networks,
suggesting that the inhibitor may successfully degrade both globular aggre-
gates and also fibril networks. Most notably, the GA Monte Carlo analysis
suggested that the majority of the material sedimented much slower
when inhibitor was added to the sample, resulting in a decrease of the



Figure 4.13 Electron micrograph of 21 mM Ab (1^42)/Ab (1^42)-OG mixed with
200 mM inhibitor after 5 days of incubation agitated slowly at room temperature. Bar:
100 nm.
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weight-average sedimentation coefficient from 52.0 to 25.5 S and a con-
comitant increase in the weight average frictional coefficient from 1.29 to
1.93 when compared to the control experiment. The major species (33%
sedimenting at 21.8 S) detected in the sample containing the inhibitor
displayed a significantly increased frictional ratio with a large standard
deviation (2.79, +1.11/–0.63), which is strongly indicative of a large
range of fibril structures with varying lengths. Such structures were not
measured in the control experiment (Fig. 4.10A). Again, this observation is
closely matched by the corresponding TEM experiment, which shows a
high concentration of varying length fibrils that are quite short in compari-
son to the large fibril networks observed in Figs. 4.11 and 4.12. Instead,
Fig. 4.13 revealed the presence of high numbers of thin filaments (width
below 5 nm). Because of their high abundance and their dimensions close to
the resolution limit of TEM it was impossible to give reasonable estimates
about their length. Nevertheless, a process leading to thinner filaments, for
example, by preventing lateral association, should result in larger frictional
ratios and increased axial ratios. For the control experiment, we also
modeled the globular solutes seen in Figs. 4.11 and 4.12. Small spherical
particles seen in the TEM experiment (Figs. 4.11 and 4.12) suggest dia-
meters ranging from 4 to 20 nm. Such particles are consistent with the
globular solutes found in the velocity experiment shown in Fig. 4.10A. A
summary of the globular particles is shown in Table 4.2. The literature
reports micellar amyloid b (Sabatè and Estelrich, 2005) as well as other
globular aggregates (Hepler et al., 2006; Lambert et al., 1998) of the peptide,



Table 4.2 Globular species detected in sedimentation velocity experiment and their
predicted diametera

svalue f/f0

Relative
concentration
(%)

Calculated
diameter
(nm)

Approximate
molecular mass
(Da)

11.5 S 1.25 4.20 4.3 2.7 � 105

28.7 S 1.00 7.90 12.0 7.5 � 105

46.4 S 1.00 27.80 15.5 1.5 � 106

65.2 S 1.00 17.90 18.2 2.6 � 106

84.0 S 1.00 7.39 20.7 3.8 � 106

a Predicted sizes correlate well with the measured particles in TEM images.
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which also supports the detection of these particles by sedimentation veloc-
ity centrifugation. The very small globular particles visible in Fig. 4.11 have
an estimated diameter of 3 to 4 nm.
5. Conclusions

We have developed new procedures that allow investigators to analyze
AUC experiments with unsurpassed precision. We have shown that by
applying computationally advanced tools we can improve AUC data analy-
sis by a significant measure and provide information content and reliability
of the results that exceed, by far, the information gleaned from traditional
methods (Brown and Schuck, 2006; Demeler and Saber, 1998; Schuck,
2000; Stafford, 1992; van Holde and Weischet, 1978). The investigator can
now reliably characterize mixtures of solutions that are simultaneously
heterogeneous in molecular weight and also in shape. In addition, our
methods make it possible to measure the statistical relevance of the results.
We have developed a grid-based implementation of all necessary tools and
have built the necessary environment to conveniently use these tools
through user-friendly Web interfaces and to distribute compute jobs to
remote supercomputers using the Globus grid technology (Foster, 2005).
Example 1 demonstrated the ability of our method to extract very detailed
molecular weight and shape information from sedimentation velocity
experiments containing stochastic noise equivalent to that observed in a
Beckman Optima XL-A by accurately resolving up to five different species
ranging between 25 and 400 kDa and covering frictional ratios ranging
between 1.2 and 2.0. Because these results are obtained when optimal con-
ditions are present, we would like to stress the importance of high-quality
data. We note that these results can only be obtained when data are free of
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systematic error sources, which need to be carefully controlled or elimi-
nated. While our software allows for the correction of time- and radially
invariant noise contributions, other systematic error sources may still be
present that could significantly impact the accuracy of the results obtained.
Potential distortions of data could result from concentration-dependent
nonideality terms that are not considered in the model, from nonlinearities
in the optics, refractive artifacts, including Wiener skewing, temperature,
wavelength, and rotor speed variations, as well as buffer gradients that may
be changing density and viscosity as a function of radius, and incorrect speed
selections for the execution of the experiment. Other factors affecting
accuracy can be controlled by the experimentalist using special care during
the design of the experiment to assure that optimal conditions exist
during the experiment, such as (1) cleaning the lamp before the experiment
to assure maximum intensity; (2) using only carefully aligned cells (we use
the Spin CAT cell alignment tool, available from Spin Analytical, P.O. Box
865, Durham, NH 03824-0865); (3) avoiding the use of worn out or
deformed cell housings or scratched/damaged centerpieces and windows;
(4) making sure that the optical system is aligned properly; (5) measuring at
230 nm, where light intensity is maximal, if buffer conditions permit the use
of low UV wavelengths; and (6) making sure that optical density levels do
not exceed the linearity of the optics, which is a function of light intensity
that varies with wavelength of the light used. We also recommend using
intensity measurements instead of absorbance measurements, which avoids
the subtraction of two stochastic noise vectors, and hence avoids an increase
of stochastic noise by a factor of

ffiffiffi
2

p
; we also recommend avoiding buffer

components that either contribute to the background absorbance or change
the absorbance or refractive index during a run (certain reductants are prone
to exhibit this problem when they change oxidation state midrun). Results
obtained from the methods described here, when applied to the experimen-
tal amyloid aggregation system, provided new information on several levels
and the presented AUC analysis methods proved to be a valuable tool in
characterizing the aggregation process of amyloidogenic proteins. Particu-
larly with respect to the evaluation of aggregation modulating compounds
the method will be of great importance. Due to the improved data evalua-
tion method, differently shaped and sized particles could be detected in one
experiment, which could be validated by electron microscopic images
performed with aliquots of the identical samples. A frictional ratio of 2.8
associated with the dominant species with 21.7 S in samples where the Ab
(1–42) peptide was incubated for 5 days together with the inhibitor sug-
gested an increased axial ratio of the underlying particles. This corresponds
well to the TEM experiments of the same sample, which show a large
number of thin filaments, which are not present in controls of Ab (1–42) or
in the ligand alone. Also, based on the sedimentation velocity results we
could determine the relative amount of globular aggregates present in the
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inhibitor-free control sample and estimate the size and molecular weight of
these species. Such species were also detected in the TEM images. Since
electron microscope images show only a minute section of a sample and
presume that all species absorb equally well to the grid, analytical ultracen-
trifugation and our analysis methods can nicely complement TEM and add
important information to the study of amyloids by more comprehensively
representing the soluble portion of the sample and by describing the relative
ratio in the mass and shape of the soluble particles. We suggest that further
velocity experiments performed at lower speeds could potentially derive
additional information about the presence of fibril networks that appeared
to have sedimented during acceleration and were therefore not detected in
our experiments and plan to investigate this further.
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