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Abstract:

Sedimentation experiments can provide a large amount of information about the composition of a

sample, and the properties of each component contained in the sample. To extract the details of the

composition and the component properties, experimental data can be described by a mathematical

model, which can then be fitted to the data. If  the model  is nonlinear in the parameters, the

parameter adjustments are typically performed by a nonlinear least squares optimization algorithm.

For models with many parameters, the error surface of  this optimization often becomes very

complex, the parameter solution tends to become trapped in a local minimum and the method may

fail to converge. We introduce here a stochastic optimization approach for sedimentation velocity

experiments utilizing genetic algorithms which is immune to such convergence traps and allows

high-resolution fitting of  nonlinear multi-component sedimentation models to yield distributions

for sedimentation and diffusion coefficients, molecular weights, and partial concentrations.

Keywords: analytical ultracentrifugation, sedimentation velocity analysis, genetic algorithms

Abbreviations: GA=genetic algorithm, RMSD=residual mean square deviation, NNLS=non-

negatively constrained linear least squares.



Introduction:

A  commonly  used  approach  for  determining  observable  parameters  from  experimental

sedimentation  data  involves  building  a  mathematical  model  describing  the  transport  of

macromolecular species in the ultracentrifugation cell. In such a model, every feature of the system

under study which results in an observable signal such as a change in absorbance is described by an

adjustable parameter in the model. The parameters are adjusted by a fitting method that seeks to

minimize the difference between the model and the experimental data in a least squares sense:
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Here,  yi represents each experimental  data point  i, and Yi  (P)  represents the corresponding data

point simulated by the model  as described by parameter vector  P. Models that are linear with

respect to their parameters can be fitted by a generalized linear least squares approach in a single

iteration, while models that are nonlinear with respect to their parameters have to be fitted in an

approach that  iteratively  adjusts all  parameters to an optimal  value.  The optimal  parameter

combination
�
P represents those parameters that minimize Equ. 1. For highly nonlinear problems,

models with many parameters, and parameters that exhibit a high degree of correlation, the error

surface described by Equ. 1 can be very complex and contain many local minima which tend to

trap the optimization process. For such cases, conventional  gradient descent methods such as

Gauss-Newton, Levenberg-Marquardt, and quasi-Newton commonly will  fail  to converge to the

global minimum, and will provide less than optimal solutions for the fit. Other problems associated

with direct fitting of experimental data relate to the selection of the correct model function. Here,

user input is required which introduces an unavoidable bias into the approach. To circumvent such

caveats, other methods not relying on nonlinear least  squares fitting have been explored. Not
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unexpectedly, each method exhibits both advantages and shortcomings. We will  briefly review

three popular  methods for  sedimentation velocity  experiments.  Graphical  transformations of

sedimentation velocity  data were introduced by  van Holde &  and Weischet [van Holde and

Weischet, 1978]  and later refined [Demeler &  van Holde, 2004]. This approach yields model-

independent,  diffusion-corrected  sedimentation  coefficient  distributions.  However,  diffusion

coefficients and molecular weights, or frictional  parameters can not be reliably obtained by this

method.  In another  model-independent  approach, Stafford [Stafford,  2000]  introduced time-

differencing of  sedimentation velocity profiles to transform sedimentation velocity data to g(s)

profiles. The main advantage of  this approach is its capability to eliminate time-invariant noise

contributions.  Here too,  molecular  weights and  diffusion  coefficients are unavailable and

sedimentation distributions are not deconvoluted from diffusion without further nonlinear least

squares fitting. The C(s) method [Schuck, 2000] avoids a multi-dimensional nonlinear least squares

fit by linearizing the problem over the sedimentation coefficient domain using a constant frictional

ratio  f/f0 to provide a corresponding diffusion coefficient.  In the latter  approach,  a linear

combination of  finite element solutions to the Lamm equation [Lamm, 1929]  are fitted to the

experimental  data. The NNLS algorithm [Lawson &  Hanson, 1974]  is used to fit  the linear

coefficients of each term. The method finds all non-negative contributions, the remaining terms are

set  to zero.  In an iterative approach,  the fricitional  coefficient  (which makes this problem

nonlinear) can be fitted as well, reducing the problem to a well-conditioned one-dimensional

search. Because a frictional coefficient is available, diffusion coefficients can also be obtained from

the fit  and can be used to determine molecular weights. This approach works well  for those

systems where all components have very nearly the same frictional properties, and can be equally

well described by a single frictional ratio. Such cases may be present when all components in the

system are globular proteins. However, when components of appreciably different frictional ratios



are present, such as mixtures of globular proteins with different length aggregates, fibrils, extended

DNA molecules, random coil conformations, or mixtures of any of the above, and complexes with

intermediate frictional  properties, a single frictional  ratio will  yield suboptimal  results and is

insufficient to describe the entire system accurately. When parameters from such a system are

determined with the C(s) method, the determined molecular weights will  be unreliable if  only a

single frictional coefficient is used to represent all components. Therefore, for such systems it is

important to allow the frictional ratio or the diffusion coefficients to be adjusted independently for

all  components.  Table 1 summarizes the results obtained from the analysis of  a non-interacting

mixture (Figure 1) of a linear 208 basepair DNA molecule and a small globular protein (lysozyme),

with three different approaches: 1. a nonlinear least squares fitting approach of  finite element

solutions to the Lamm equations (overlays are shown in Figure 1), 2. the C(s) method, and 3. by

the van Holde – Weischet method (results from all  three methods are combined in Figure 2).

Results from the nonlinear least squares fitting with finite element solutions of the Lamm equation

allow parameters from both components in the system to be adjusted independently, and are in

excellent agreement with the known molecular weights of the two components. As expected, two

very different frictional  ratios are observed. While the van Holde – Weischet method results in

sedimentation coefficients closely matching the nonlinear least squares fitting results, molecular

weight  information or  shape information is not  available. When the C(s)  method is used in

conjunction with an adjustable frictional ratios, the ratio obtained can by design only represent the

best average between the two species, and is therefore too high for lysozyme, and too low for

DNA. When analyzed with no regularization, the C(s) method will  introduce artifactual  peaks

around the lysozyme peak, and when regularization with an F-ratio of  0.95 is used, the peak is

strongly broadened and the peak appears off-center. Furthermore, the C(s) analysis results in an

RMSD 36% higher  than the RMSD from the finite element fit. When the frictional  ratio is



combined with the sedimentation coefficient distribution, this value results in incorrect molecular

weights for both species. Even after correction with the appropriate partial  specific volumes the

molecular weight of  lysozyme is predicted too high, while the molecular weight  of  the DNA

molecule is predicted too low. Therefore, we conclude that for systems involving components with

different frictional  ratios the C(s) method is not the appropriate approach. In addition, using a

constant  frictional  term for  the description of  all  species in the cell  further  complicates the

interpretation of  the results when molecules with different densities are examined (for example,

mixtures of nucleic acids and nucleic acid binding proteins). From the results shown in Table 1 it

may appear that the nonlinear least squares fitting approach with finite element solutions of  the

Lamm equation will provide the best information possible. In the example shown here, a bimodal

fit clearly results in a satisfactory solution, but this result will not be observed in the general case.

The same approach will almost always fail for cases where more than 2 or 3 components are fitted

and all  relevant parameters are adjusted simultaneously (data not shown). The reason for this

failure can be traced to the nonlinear least squares fitting approaches which are very sensitive to

initial  parameter guesses and the presence of  local  minima in the error surface of  the fitting

function. The problem becomes especially apparent when many nonlinear parameters are present,

or the parameters are highly correlated. Such circumstances result in very complex error surfaces

and often prevent convergence at the global minimum. Our goal is therefore to provide a method

that combines a model-independent approach with the generality of  directly and independently

fitting each parameter's sedimentation and diffusion coefficient with an optimization method robust

enough to reliably identify global minima in the error surface described by a multi-dimensional

parameter space.

Proposed Method:



Here we propose an alternative approach to the global parameter optimization by nonlinear least

squares fitting by introducing stochastic methods for parameter estimation. Stochastic methods do

not rely on gradient descent in the error surface to find the best-fit solution, but instead introduce a

random parameterization of the search space which allows the methods to probe for solutions by

randomly placing parameter values within a constrained domain. Although these methods are

computationally more expensive, they allow the solution to escape or ignore local  minima and

provide a higher  likelihood of  finding the global  minimum. Several  approaches employing

stochastic parameter estimation have been explored, among them are genetic algorithms (GA)

[Holland, 1975, Goldberg, 1989, Koza, 1992], Monte Carlo methods and simulated annealing

methods [Kirkpatrick et al., 1983 and Cerny, 1985]. For our study, we chose to explore Monte

Carlo methods and GAs. A Monte Carlo approach is based on randomly selecting parameters from

the search space, simulating a model function based on these parameters, and evaluating the fitness

function. However, there is no particular bias towards any solution, so if the search space is very

large, the computational effort can be prohibitive because the entire space needs to be evaluated.

When GAs are employed,  a bias is introduced to the generic Monte Carlo approach by

implementing a selection process analogous to natural  selection in evolution. An initial  random

population of individuals is simulated, and each individual's fitness is evaluated and the population

is allowed to evolve. Parameter  vectors are treated as genes which can exchange or modify

parameters (bases) by crossover with other parameter vectors or by mutation, insertion or deletion

operators. Multiple populations (demes) can evolve independently, or experience a controlled

migration rate,  which allows for  exchange of  parameter  information among multiple demes.

Evolution of  the best fit parameter combination within a population is controlled by a multi-

generational selection process, which favors survival of individuals with a better fit. The survival

pressure, migration rate, crossover frequency, mutation, insertion and deletion probability can be



independently  controlled by random number operators, and each probability  rate needs to be

optimized for best efficiency. The fitness function is given by the l2-norm of Equ. 1:

2

Description of the Algorithm:

The algorithm proceeds as follows: To limit the search to a reasonable domain, the search space is

initialized with a model-independent approach. We found that the van Holde – Weischet analysis

[van Holde &  Weischet, 1978, and Demeler &  van Holde, 2004] best serves this requirement by

providing a lower and upper limit of  the sedimentation space, and by providing an approximate

number of species in the system. Using the number of estimated components and the sedimentation

coefficient range, the search space is partitioned accordingly, and a set of random individuals are

initialized with sedimentation coefficients randomly selected between the limits projected by the

van Holde – Weischet method. In order to form a complete parameter set for a given species j, a

diffusion coefficient is needed as well. We chose to initialize diffusion coefficients based on a

reasonable range of frictional coefficient ratios � j as a parameter to the sedimentation coefficient s

for each species in the system. Equ. 3 shows the formula used to calculate the diffusion coefficient

for species j:

D j

�
s , � j ��� RT

�
N � j 6 ��� �
	 1 � 9s j � j � �

2 � 1 � ������� 	 1 � 2
and 1.0 ��� j ��� max
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where R is the gas constant,  T the temperature in Kelvin,  N is Avogadro's number,  �  is the

viscosity of  the solvent, �  is the density of solvent, and � is the partial specific volume of  the

molecule. Here, � j is assigned a random value in a reasonable range for the system under study. For
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globular proteins, we suggest values between 1.0 and 3.0, for linear DNA fragments � max values as

high as 15 are appropriate. The size of this initial set can vary between 50-500 individuals in each

deme, and several demes can evolve simultaneously, depending on computational resources. Each

pair of sedimentation and diffusion coefficients is used to calculate a finite element solution for the

experimental  conditions [Cao and Demeler, 2005]  with a unity concentration factor. The NNLS

algorithm [Lawson & Hanson, 1974] is used to solve Equ. 4, where C is the vector of coefficients

cj for each species j, and  L is the matrix of  Lamm equations used to model  each individual

component. The values of  cj correspond to the relative concentration of each species in the linear

combination that forms an individual in the deme.

C L
�
s j , � j ��� B 4

A fitness value is then computed for each individual in the population using the l2-norm shown in

Equ. 2. At this point, the first generation is completed and the GA is used to calculate the next

generation. For  each individual,  progeny is generated by  applying the GA  operators on the

parameter  sets defining  the individuals.  Selection takes place by  preferentially  discarding

individuals which display a poor fit, and maintaining the best individuals in the population. It is

important to avoid dominance of one particular individual by always maintaining a range of fitness

in the population, which will assure diversity in the parameter pool. The next generation is created

by  applying the GA  operators to the selected individuals.  Each operator  is controlled by  a

probabilistic rate constant. Here, the deletion operator may delete a species from an individual, or a

new species is added to an individual. Individuals containing fewer species are assigned a higher

selection rate than individuals with more species and the same fitness value in order to reflect the

lower computational  cost of  reproduction. Mutation operators may change the value of  any one

species' sedimentation or diffusion coefficient, and the crossover operator allows two parental

individuals to randomly exchange information encoding one or more species. The fitness of  the



individuals in the new generation is again evaluated, and the process is repeated until convergence

is approached. Once the solution reaches an optimum, a nonlinear least  squares optimization

routine can be applied to quickly find the absolute global  minimum in the vicinity of  the GA

solution. Once the solution is in the vicinity of  the global  minimum, any gradient descent will

perform much more quickly in locating the global minimum, since the error surface is generally

well conditioned in this much reduced parameter space. To alleviate the computational demand for

solving this stochastic problem, we have implemented the GA on a parallel  architecture using

SUSE Linux 64 on a 44-node opteron cluster at the Department of Biochemistry at the University

of Texas Health Science Center at San Antonio. 

Results:

A typical  problem that may be faced in a laboratory is the analysis of  a DNA binding protein

complex, with some free DNA and free protein present in the mixture. If the association kinetics

are sufficiently slow, such a system can be simulated with a noninteracting model and will present

a situation where all components will have different frictional ratios: A large frictional ratio for the

free DNA, a globular frictional ratio for the free protein, and an intermediate frictional ratio for the

complex. To verify the capability of the proposed method, we simulated such a system and added

noise of comparable quality to that observed in the XL-A analytical ultracentrifuge to the solution.

The parameters for this 3-species system are listed in Table 2. Data analysis results from the van

Holde – Weischet method, the C(s) method, and the GA optimization are presented in Figure 3. As

can be seen from this Figure, the results from the GA are nearly identical with the parameters used

in the original simulation. We further compared the results from different speed simulations (20, 40

and 60 krpm, data not shown) and from globally fitting all three speeds simultaneously. Table 3

lists the results from these experiments and indicates the errors between the simulated parameters



and the parameters determined with the GA optimization. The results suggest that the highest

speed provides the most  reliable information for  the partial  concentration and sedimentation

parameters, as long as enough signal for the fastest component can be collected. Adding slower

speeds to a global multi-speed fit further improved the optimized parameters. To further test the

capabilities of this method, we attempted to identify the components of an 8-species system, where

the components cover a large range of molecular weights. Simultaneously, we wanted to challenge

the resolving power of this method by simulating a system where two components may share the

same molecular weight, but have markedly different frictional  ratios. Such a condition may be

presented by a system undergoing a conformational isomerization, an example may be a folded

protein with a fraction of  the protein in an unfolded or  improperly  folded state.  A  system

displaying both heterogeneity in sedimentation and in frictional  properties may be presented by

aggregating proteins forming fibrils and other extended structures. The simulation parameters for

the 8-component system are listed in Table 2, the results for the fit and errors are shown in Table 4,

and a comparison of the partial concentrations and calculated molecular weights with those from

the target distribution is shown in Figure 4. Here, the results suggest that the method can resolve

well 8 components with disparate frictional ratios extending over a large sedimentation coefficient

range. While sedimentation coefficients and partial  concentrations are reproduced most reliably,

the resolution of  diffusion coefficients can be impaired when species with similar sedimentation

coefficients but diverging diffusion coefficients are present. In all cases we compared evolutions

spanning 100 generations and 500 individuals and 410 demes. At this point a well isolated solution

had emerged in all cases, and further iterations did not improve the fit. It should be noted that the

RMSD values from all individuals in each iteration provide a statistical sampling of the parameter

space which can be used in place of Monte Carlo analysis results. An example of such a parameter

distribution is shown in Figure 5 for the sedimentation coefficient distributions of the 8-component



system. We further observed a trend in the speed of convergence. For the case of the 3 component

system, we noticed that convergence was most rapidly obtained in the 20 krpm and the global

20/40/60 krpm fits, followed by the 40 krpm fit, and then trailed by the 60 krpm fit. While all fits

resulted in a convergence with essentially the same RMSD, the relative performance at different

speeds suggests that different experimental  speeds result in varying signal strengths that can be

distinguished by the GA. The performance of a GA is measured by the rate of convergence to a

target solution. Tuning the parameters controlling the GA has a major impact on performance. Let

N be the population size times the number of  generations. N is the total  number of  individuals

tested throughout the run and is approximately proportional to the total running time. We evaluated

the effect  of  several  factors impacting the performance of  the GA. First, we compared the

performance of a small population and a large number of generations to the performance of a large

population with a small number of generations. At the extremes, a population size of one with N

generations would be useless, and a population size of N with one generation would be equivalent

to random guessing. Neither case is optimal as can be seen from the results presented in Table 5.

Next, we considered crossover and mutation rates together. In crossover, parts from two good

individuals are taken and combined to create a new individual for the next generation. Mutation is

applied by  taking one individual  and adding randomness to one or  more parameters in this

individual to create a new individual for the next generation. Naively, one may want high rates for

both crossover and mutation operators, but our total population size is restricted, so high rates of

mutation would hide any crossover benefit.  Preliminary results indicate that  crossover likely

provides a benefit in finding solutions to sedimentation velocity experiments. 

Discussion:

From this data it is clear that the GA method affords remarkable resolution in partial concentration,



sedimentation and diffusion coefficient  determination for  sedimentation velocity  experiments.

Therefore, the method excells at resolving molecular weights, even for systems with a relatively

large number of  components. In addition, GAs gain an increase in accuracy by globally fitting

experiments conducted at  multiple speeds.  Insertion and deletion operators effectively  and

automatically control the selection of the appropriate model, removing the user bias associated with

the selection of  a fitting model, providing a model-independent and general  approach for fitting

sedimentation velocity experiments. Overall, the reproduced accuracy and resolution is unmatched

by any other method available to us. We are currently investigating if GAs can also be applied to

determine self-association properties and equilibrium constants, and if  GAs can automatically

determine the appropriate model for an interacting system. Future work in this area will focus on

further reducing the search space and optimizing the GA itself. While the potential of this method

for  resolving individual  species in a sedimentation velocity  experiment are obvious from the

presented data, GA calculations are computationally intensive and are best performed through

parallel computation. Optimization of the method itself remains a requirement before this analysis

method can be adopted on a routine basis.  Although a poorly optimized algorithm will eventually

arrive at  the  global  optimum,  convergence rates  may  vary  drastically.  Considering  the

computational  expense of  Lamm equation  evaluations,  a well-tuned  GA  is an  important

requirement. Our preliminary findings indicate that factors such as  population size, the number of

demes and generations, the rates for mutation, crossover, deletion, insertion, migration, and the

method chosen for initialization all effect the convergence rate. Thus, we can consider these factors

as parameters in a second optimization problem. Since the GA  is a stochastic process, each

parameter vector must be tested on multiple target systems. It is quite possible that performance

tuning will suggest different search conditions for different systems, and that these parameters are

dependent on the number of  species,  s and  D distributions, and partial  concentrations. Each



parameter needs to be evaluated with many trials using different random seeds. We are continuing

to explore this parameter space. We further propose that this method could easily be extended to

also include related experiments in a global analysis such as a combined analysis of sedimentation

velocity  and equilibrium experiments,  and dynamic light  scattering experiments.  Here,  the

experiment can be described with a nonlinear least squares fitting model  containing the same

parameters used in the sedimentation velocity experiment (D and the ratio of  s/D, which is

proportional  to molecular weight). In summary, we conclude that the GA approach excells in

avoiding local minima convergence traps. From our analysis we conclude that the only limitation

of the method is the signal contained in the data. As soon as changes in concentration needed for

the determination of a parameter are masked by experimental noise, the limit of resolution has been

reached.  Highly  correlated parameters such as multiple diffusion coefficients for  molecules

sedimenting with similar sedimentation coefficients have also proven to be difficult to resolve.



Model s20,W (x10-13) D20,W (x10-7) f/f0 MW (kD) Species

Finite Element Fit

RMSD: 4.60x10-3

5.43 2.28 3.1 128.8 (130.7) DNA

1.71 10.2 1.29 14.6 (14.4) Lysozyme

C(s) Fit, 

RMSD: 6.26x10-3

5.19 3.67 2.29*) 76.65 (130.7) DNA

2.45 5.45 1.75*) 39.67 (14.4) Lysozyme

van Holde – Weischet
5.35 N/A N/A N/A DNA

1.87 N/A N/A N/A Lysozyme

Table 1

Comparison between sedimentation velocity methods. Data analysis parameters from the finite

element and C(s) fitting method, and the van Holde – Weischet method. Molecular weights (MW)

in parentheses indicate theoretical molecular weight. 

* ) frictional ratios are corrected for the partial specific volume of DNA and lysozyme, respectively.



Model Partial
concentration s D Molecular

Weight (kD) f/f0

3 species, 1 0.3 4.238x10-13 7.343x10-7 50 1.203

3 species, 2 0.2 5.943x10-13 1.622x10-7 198 3.765

3 species, 3 0.8 9.023x10-13 1.872x10-7 298 2.754

8 species, 1 0.1 2.481x10-13 1.080x10-6 20 1.112

8 species, 2 0.2 3.707x10-13 6.423x10-7 50 1.375

8 species, 3 0.3 4.587x10-13 4.416x10-7 90 1.644

8 species, 4 0.4 5.063x10-13 3.147x10-7 140 1.994

8 species, 5 0.3 1.053x10-12 9.651x10-8 945 3.435

8 species, 6 0.2 7.827x10-13 1.514x10-7 450 2.809

8 species, 7 0.15 1.760x10-12 3.405x10-7 450 1.249

8 species, 8 0.1 1.294x10-12 1.502x10-7 750 2.389

Table 2

Parameters used for the simulation of the 3- and 8-species velocity experiments. For the 8-species

system, parameters were chosen to determine if components with the same molecular weight, but

different shapes (species 6 and 7) and species with closely spaced sedimentation and diffusion

coefficients (species 3 and 4) can be resolved. Also, the components were broadly spaced in s and

molecular weight, to determine the limits of the method in its ability to resolve multiple species,

even if they are closely spaced.



Parameter 60 krpm % Error 20/40/60 krpm % Error

Concentration 1: 0.2946 - 1.80 % 0.2989 - 0.37 %

Concentration 2: 0.2047 + 2.35 % 0.1998 - 0.10 %

Concentration 3: 0.8009 - 0.11 % 0.8010 + 0.13 %

Sed. Coeff. 1: 4.228x10-13 - 0.24 % 4.236x10-13 - 0.05 %

Sed. Coeff. 2: 5.915x10-13 - 0.47 % 5.934x10-13 - 0.15 %

Sed. Coeff. 3: 9.021x10-13 - 0.02 % 9.016x10-13 - 0.08 %

Diff. Coeff. 1: 7.239x10-7 - 1.42 % 7.358x10-7 + 0.20 %

Diff. Coeff. 2: 1.899x10-7 + 17.01 % 1.6250x10-7 + 0.19 %

Diff. Coeff. 3: 1.890x10-7 + 0.96 % 1.875x10-7 0.16%

Table 3

Parameters obtained from the average of 25 runs of 100 generations of the GA optimization for the

simulated 3-species system shown in Table 2. The same system was simulated with a speed of 20

krpm (GA  fit RMSD: 5.74x10-3), 40 krpm (GA  fit RMSD: 5.79x10-3), and 60 krpm (GA fit

RMSD: 5.84x10-3). We show here the results from the 60 krpm experiment and the results from the

global fit of multiple speeds (20, 40 and 60 krpm, GA fit RMSD: 4.05x10-3). As can be seen from

these results, not only is the overall percent error for parameter determinations smaller for a global

multi-speed analysis, but the RMSD of the fit is smaller as well, indicating a better fit. The highest

increase in accuracy results from the improvements in the estimation of the diffusion coefficients.

We speculate that the longer run times in the low speed runs improve the signal for the diffusion

and hence provide additional information to the global fit allowing a higher accuracy for diffusion

determinations.  Each run took approximately 7 minutes using 1 CPU.



Species Concentration s D

1 0.100379 (- 0.38 %) 2.49x10-13 (+ 0.36 %) 1.062x10-6 (- 1.67 %)

2 0.198768 (- 0.62 %) 3.69x10-13 (- 0.46 %) 6.190x10-7 (- 3.63 %)

3 0.306232 (+ 2.08 %) 4.61x10-13 (+ 0.50 %) 4.190x10-7 (- 5.12 %)

4 0.394280 (- 1.43 %) 5.06x10-13 (- 0.06 %) 3.290x10-7 (+ 4.54 %)

5 0.198518 ( - 0.74 %) 7.80x10-13 (- 0.34 %) 1.370x10-7 (- 9.51 %)

6 0.301060 (+ 0.35 %) 1.05x10-13 (+/- 0.0 %) 1.000x10-7 (+ 3.62 %)

7 0.099526 (- 0.47 %) 1.29x10-13 (- 0.46 %) 1.600x10-7 (+ 6.52 %)

8 0.151501 (+ 1.00 %) 1.75x10-13 (- 0.62 %) 5.340x10-7 (+ 56.83 %)

Table 4

Parameters obtained from the GA  optimization for  the 8-species system shown in  Table 2

simulated with 60 krpm. At 60 krpm the errors for the sedimentation coefficient are much smaller

than for the diffusion coefficient, indicating a stronger signal from sedimentation than diffusion.

The resolution of the method is limited for diffusion coefficients when the species sediment very

close together, even when the diffusion coefficients are far apart (species 8, see discussion).  This

multi-deme run took approximately 10 hours using 44 CPUs. 



Population size Generations Average RMSD Best RMSD

1000 1 0.01173 0.00965

100 10 0.00946 0.00902

50 20 0.00932 0.00906

20 50 0.00919 0.00903

10 100 0.00919 0.00901

5 200 0.00947 0.00901

2 500 0.04487 0.01776

Table 5

Performance observed for a fixed N (N = population size *  generations). Targeted is the 3-species

velocity experiment.  For each population size and generations pair, 25 separate GA runs were

performed with different random seeds.  The lowest RMSD individual is chosen from each run

giving 25 individuals from which the average and best RMSD are reported.  The first case of a

single generation can be considered a pure Monte Carlo method since no GA operators are applied.

An intermediate population and generation size results in the most  consistent  performance

improvement.



Figure 1:

Sedimentation velocity data of  a 208 bp linear DNA fragment and lysozyme fitted to a finite

element solution of a two-component non-interacting model. Such a mixture is representative of a

system that  exhibits two very different  frictional  ratios in a single experiment. Experimental

datapoints are represented by open circles, the finite element solution is shown as continuous lines.

Parameters for this fit are shown in Table 1.

Figure 2:

Sedimentation velocity analysis of  the two-component system shown in  Figure 1 by the C(s)

method (regularization with F-ratio of  95%, solid line, no regularization: line with upside-down

triangles, RMSD=0.0063), the van Holde – Weischet analysis (line with filled circles) and the

direct boundary fit with the finite element method (stars, RMSD=0.0046). Due to the difference in

frictional  ratio, the C(s) method fails to provide reliable sedimentation coefficient distributions,

while the van Holde – Weischet method approximates more closely the sedimentation coefficients

observed in the finite element direct boundary fitting method.

Figure 3:

Sedimentation coefficient distributions reported by various data analysis methods when applied to

the simulated 3-species system shown in Table 2 (60 krpm). Shown are the target values from the

simulation (stars), the van Holde – Weischet analysis (dotted line), the C(s) analysis without

regularization applied (solid line)  and the results from the genetic algorithm (vertical  bars).

Residual bitmaps for the C(s) fit and the genetic algorithm fit are shown in insert on top left. The

characteristic diagonal indicating systematic deviations that can be seen in the C(s) analysis bitmap

is absent in the genetic algorithm fit, indicating that a more appropriate fit is obtained with the



genetic algorithm that allows for a variation in the frictional ratio.

Figure 4:

Molecular Weight distribution obtained from the genetic algorithm when fitting the simulated 8-

component system listed in  Table 2. The simulated target values are represented by stars, the

values derived from the genetic algorithm optimization are shown as vertical  lines. The vertical

position of  the stars and the height of  the lines correspond to the partial  concentration of  each

species. As can be seen from this graph, the genetic algorithm faithfully reproduces the number of

components and the partial concentration of each component in the system, and in all but one cases

closely matches the molecular weight of the target. The two targets at 450,000 dalton represent two

species with  the same molecular  weight,  but  different  frictional  ratios and  sedimentation

coefficients. In this case, only one of the species could be resolved correctly. 

Figure 5:

Monte Carlo parameter distributions derived from the 8-component genetic algorithm fit for the

sedimentation coefficient distribution. Here the sedimentation coefficient  distribution from the

best-fit 5000 individuals are shown. The best definition is for well  separated components in the

center of the distribution which have the largest amplitude and the narrowest parameter spread. The

best fit parameter combination is represented by the tips of  each peak, and corresponds to an

RMSD of  5.84x10-3. The parameters at the bottom of  the distribution are derived from those

individuals with an RMSD similar  to the RMSD of  the worst  individual  in the top 5000

individuals. The area under each peak is exactly 5000 individuals, since all top 5000 individuals

showed 8 species.
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