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Abstract We report a model-independent analysis

approach for fitting sedimentation velocity data which

permits simultaneous determination of shape and molecu-

lar weight distributions for mono- and polydisperse

solutions of macromolecules. Our approach allows for

heterogeneity in the frictional domain, providing a more

faithful description of the experimental data for cases

where frictional ratios are not identical for all components.

Because of increased accuracy in the frictional properties

of each component, our method also provides more reliable

molecular weight distributions in the general case. The

method is based on a fine grained two-dimensional grid

search over s and f/f0, where the grid is a linear combina-

tion of whole boundary models represented by finite

element solutions of the Lamm equation with sedimenta-

tion and diffusion parameters corresponding to the grid

points. A Monte Carlo approach is used to characterize

confidence limits for the determined solutes. Computa-

tional algorithms addressing the very large memory needs

for a fine grained search are discussed. The method is

suitable for globally fitting multi-speed experiments, and

constraints based on prior knowledge about the experi-

mental system can be imposed. Time- and radially

invariant noise can be eliminated. Serial and parallel

implementations of the method are presented. We dem-

onstrate with simulated and experimental data of known

composition that our method provides superior accuracy

and lower variance fits to experimental data compared to

other methods in use today, and show that it can be used to

identify modes of aggregation and slow polymerization.

Keywords Analytical ultracentrifugation �
Sedimentation velocity �Molecular weight determination �
Shape determination � Whole boundary fitting �
ASTFEM method � NNLS method

Introduction

Sedimentation velocity experiments performed in an ana-

lytical ultracentrifuge provide results that can characterize

hydrodynamic properties of biological macromolecules,

such as sedimentation-, diffusion- and frictional parame-

ters, as well as molecular weight. During the velocity

experiment, solutes experience two transport processes,

sedimentation in a centrifugal force field, and diffusional

transport due to the development of concentration gradi-

ents. These processes can be measured by monitoring the

concentration profile in the ultracentrifuge cell over time.

Both transport processes are inversely proportional to the

frictional properties of the sedimenting solute, and the

sedimentation process is also directly proportional to the

molecular weight of the particle. By modeling the entire

concentration boundary in a sedimentation experiment it is
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possible to simultaneously measure the sedimentation and

diffusion processes for each solute. The methods com-

monly employed for sedimentation velocity analysis differ

in terms of information content, resolution, their ability to

provide diffusion coefficients and a direct measure of

molecular weight, their applicability to heterogeneous

systems, and their dependence on preconceived models

entered by the user. As has been shown previously, an

acceptable approximation for most systems is the model for

a mixture of individual, non-interacting solutes described

by the Lamm equation (Schuck 2003, Dam et al. 2005). For

such a mixture of noninteracting solutes, the total con-

centration CT of all solutes n in the ultracentrifuge cell can

be represented by a sum of Lamm equation solutions L:

CT ¼
Xn

i¼1

ciLðsi;DiÞ ð1Þ

where ci is the partial concentration, si is the sedimentation

coefficient, and Di is the diffusion coefficient of each solute

i in the mixture, and L represents a solution of the Lamm

equation (Lamm 1929) Eq. (2), which describes the

sedimentation and diffusion transport of a single ideal

solute in an analytical ultracentrifugation cell:

oC

ot
¼ 1

r

o

or
sx2rC � Dr

oC

or

� �
; m\r\b; t [ 0 ð2Þ

where C is the concentration function of radius r and time t, s

and D are the sedimentation and diffusion coefficients, and

x is the angular velocity. m and b are the radii at the

meniscus and bottom of the cell. When fitting experimental

velocity data the challenge then consists of finding the

correct values for n, ci, si and Di. Because this fitting function

is nonlinear with respect to fitting parameters ci, si and Di, an

optimization approach capable of dealing with this

nonlinearity needs to be employed. Several methods have

been proposed to accomplish this: Iterative fitting methods

using nonlinear least squares optimization were first

proposed by Todd and Haschemeyer (1981), and later

implemented by Demeler and Saber (1998), and by Schuck

(1998). However, there are significant drawbacks to this

approach: First, the correct model needs to be selected and

verified by the user, which introduces considerable bias in

the analysis. Secondly, although the method works well for

simple systems of one or two well separated components, the

nonlinear least squares fitting process tends to break down

for more complicated systems that contain three or more

components. The reason for this failure is based on the

complexity of the error surface. Simple gradient descent

methods fail to navigate the complex, multidimensional

error surface and tend to become trapped in local minima,

never converging to the global optimum and showing

significant systematic deviations in the residuals. Another

possibility is the presence of multiple minima with nearly

identical residuals, or the inadequacy of the selected model

which fails to consider additional signals present in the data.

To address this convergence difficulty, Schuck proposed

the C(s) method (Schuck, 2000), which implements a

linearization of the problem and hence avoids the

multidimensional search by iterative methods. Later an

extension of this method was proposed by Brown and

Schuck (2006) which added a regularized search over a

coarse grid of both s and f/f0. We reproduce here briefly

the linearization idea behind these approaches. First, the

sedimentation coefficient range presumed to be represented

by the solutes in the experiment is divided into n, generally

equidistant partitions, where n typically equals 50–100.

Each partition represents one term in the sum shown in

Eq. (1). The diffusion coefficient is treated as a constant and

is parameterized with the sedimentation coefficient s and a

given frictional ratio k = f/f0 as shown in Eq. (3).

D ¼ RT N18pðkgÞ3=2 s�v

2 1� �vqð Þ

� �1=2
" #�1

ð3Þ

where R is the universal gas constant, T the temperature, N

is Avogadro’s number, g and q are the viscosity and den-

sity of the solvent, and �v is the partial specific volume of

the solute. The value of k is maintained constant through-

out Eq. (1), which reduces the nonlinear fitting problem to

a linear problem where only the coefficients ci need to be

determined. For this task, a non-negatively constrained

linear least squares analysis is applied (Lawson and Hanson

1974). This assures that the coefficients contain only

positive values, or zero. For the C(s) analysis, a single-

dimensional nonlinear search over k is generally added to

this procedure in order to identify an approximate weight-

average k for all solutes present in the mixture. The fol-

lowing concerns arise with this approach: While for a

subset of experiments the weight-average approximation of

the constant k may be sufficient, generality is sacrificed by

treating k as a constant parameter, unless only a single

component is present, or all species are spherical and the

frictional ratio is equal to unity. Furthermore, if an average

frictional ratio is used to transform the s-value distribution

into a molecular weight distribution, it is generally true that

the molecular weight of the most globular component will

be overestimated, and the molecular weight of the most

nonglobular component will be underestimated. As a

consequence any one species found in the distribution may

be assigned an inaccurate molecular weight. Frequently,

heterogeneous mixtures may present heterogeneity not

only in s, but also in k. Examples for such cases include

molecules aggregating to long fibrils, where larger species

gain considerable asymmetry. Other examples include

mixtures of unfolded proteins, or mixtures of nucleic acids,

or nucleic acid—binding protein systems. In such cases the
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relatively broad boundaries for the most globular species

are interpreted as heterogeneity by least squares fitting

algorithms since multiple species with too small frictional

ratios will fit better than a single species, causing a peak to

split into multiple peaks. To address this issue, stochastic

search algorithms have previously been explored, among

them genetic algorithms by Brookes and Demeler (2006,

2007). Although the results provide convincing evidence

that it is possible to resolve more than two components in a

mixture with the same level of detail as direct boundary

fitting methods afford, such stochastic methods require

significantly greater computational effort, and implemen-

tation even on multi-core workstations is not very practical.

The C(s, f/f0) method can produce an improved description

of the underlying parameters, however, it suffers from lack

of resolution, large memory needs, and produces unnec-

essarily broad molecular weight distributions (Brown and

Schuck 2006), and introduces false positives caused by

noise in the data, and by failing to consider the entire

parameter space in each minimization step. In this work we

describe a two-dimensional spectrum analysis over

parameters s and k which is suitable for the general case of

noninteracting solutes, even when heterogeneity in both s

and in k is present. The approach solves the minimization

problem for the entire parameter space simultaneously at

any desired resolution, and can be used on a single work-

station in a serial implementation or in a parallel

distributed computing environment for improved compu-

tational speed. The method also attenuates the signal of

false positives by utilizing a Monte Carlo approach and

simultaneously correcting for time- and radially invariant

noise. The method provides a high-resolution description

of both the shape and molecular weight domain by using a

novel moving grid approach which allows the computation

to proceed at any desired resolution without exceeding

available memory. The coupled Monte Carlo method can

then provide confidence limits for ci, si, Di, as well as the

molecular weight of each solute present in the mixture.

Methods

Description of the method

Our approach for modeling experimental sedimentation

data consists of building a two-dimensional grid of fric-

tional ratios and sedimentation coefficients. For optimal

results, the range of the s and f/f0 domain should be ini-

tialized to match the range of possible values in the

experimental system. For absorbance data, the range of s

values can be conveniently initialized with the model-

independent van Holde—Weischet method (Demeler and

van Holde 2004). When significant time invariant noise

exists, for example in intensity or interference data, the dC/

dt approach by Stafford (1992) is preferred for initializa-

tion due to its superior time invariant noise handling

capability. The frictional ratio provides a convenient way

to parameterize the diffusion coefficient, which exhibits a

well defined lower limit of 1.0 for a spherical molecule,

and whose value range can be conveniently estimated (1–2

for globular proteins, 2–4 for non-globular molecules, [4

for very large, non-globular molecules such as linear DNA

and fibrils). Using Eq. (3) we can now define a unique

value for s and D at each grid point, and simulate the

velocity experiment for a species with these parameters.

For simulation of all Lamm equation models we use the

adaptive space-time finite element solution proposed by

Cao and Demeler (2005, 2008). We now build the sum:

CT ¼
Xm

i

Xn

j

ci;jL½si;Dðsi; kjÞ� ð4Þ

where si is the sedimentation coefficient at position i, kj is

the frictional ratio at position j, m is the number of grid

points in the sedimentation domain, n is the number of grid

points in the frictional ratio domain, and ci,j is the partial

concentration of each simulated solute at grid point (i, j). In

order to determine the values of ci,j, we simulate each

species i, j using unity concentration for h radial points r,

and l time scans t. The minimization problem can then be

stated as the task of finding the minimum for the l2-norm:

Min ¼
Xh

r

Xl

t

Er;t � CTr;t

� �2 ð5Þ

where Er,t refers to the experimentally determined data

points for h radial points r and l time scans t. This linear

optimization problem can be expressed in matrix form:

Ax ¼ b ð6Þ

where A is the matrix of finite element solutions, x the

solution vector containing all coefficients ci,j, and b is the

vector of experimental data. In order to solve the minimi-

zation problem, we apply the NNLS algorithm (Lawson

and Hanson 1974), which constrains the solution to values

for ci,j which are either zero or positive, and hence avoids

negative oscillations in the coefficients that would be

observed in unconstrained general linear least squares

minimization. Simultaneously, we algebraically account

for time invariant and radially invariant noise contributions

in the experimental data as described by Schuck and

Demeler (1999).

Multi-stage refinement

A limitation of the approach described above is posed by the

requirement for large amounts of computer memory

demanded by the simultaneous solutions for h 9 l 9 m 9 n
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datapoints. The typical size for h is 500–800 points, for l it is

50–100, but these vectors could be as large as h = 103 and

l = 103 when interference optics are used. Performing just a

10 9 10 grid search on such an array would require close to

half a gigabyte of memory just for data storage of a single

experiment. If multiple experiments are fitted globally, the

need for memory increases approximately linearly. While

this data size can result in prohibitive memory needs, the

availability of more data is desirable for improving the signal

to noise ratio, and ultimately the confidence limits of the

results. Furthermore, for cases where broad distributions of s

and f/f0 are expected, a 10 9 10 grid as proposed by Brown

and Schuck (2006) is insufficient to reliably describe the

experimental parameter space. If the actual solute is not

aligned with a grid point, false positives are produced (see

‘‘Results and discussion’’ below).

In order to address this problem, we introduce here a

divide-and-conquer strategy for refining the original m 9 n

grid into a grid of any desired resolution. Our approach is

suitable for describing any size system even on computers

with limited memory, but can also be implemented in a

parallel high performance computing environment. The

method which we term the multi-stage two-dimensional

spectrum analysis (MS2DSA, or 2DSA for short) is based

on a repeated evaluation of sufficient numbers of sub-grids

regularly spaced over the entire grid such that the entire

two-dimensional s and k space is covered by the simulation

process. The algorithm proceeds as follows: The initial grid

is partitioned into m regular intervals between smin and smax

in the first dimension and n regularly spaced intervals

between kmin and kmax in the second dimension (Fig. 1a).

Finite element solutions are calculated for each grid point

and the linear sum shown in Eq. (4) is formed. The least

squares solution is computed with NNLS as shown in Eq.

(5), and the solution vector containing all non-zero ele-

ments ci,j is saved in a storage vector S1 (indicating stage 1

of the multi-stage process) along with the corresponding

grid positions from the original grid (Fig. 1c). For the first

order refinement, this process is repeated three times by

moving the entire grid to three different origins as follows:

First, the grid is shifted in the first dimension by a small

increment dsa given by:

dsa ¼
smax � smin

2am
ð7Þ

where a is the refinement’s iteration number and m is the

number of grid points over s. After performing NNLS, the

non-zero elements ci,j and their grid positions are added to

S, and the process is repeated by shifting the original grid

into the second dimension by a small increment dka given

by:

dka ¼
kmax � kmin

2an
ð8Þ

where a is the iteration number and n is the number of grid

points in the k domain. Again, NNLS is performed and

nonzero elements are added to S. In the fourth grid

movement, we complete the square and shift the grid origin

by ?ds and ?dk simultaneously. A schematic view of the

grid generation by this algorithm is shown in Fig. 1. In

order to achieve further refinement this process is repeated

on the next smaller grid division until the desired resolution

is obtained by further decreasing ds and dk according to

Eqs. (7) and (8). Here we mean by iteration one full cycle

of the four transformations of the grid origin explained

above. At each grid position we populate the storage grid

S1 by adding the non-zero elements of each NNLS calcu-

lation to S1. When the number of non-zero parameters in S1

matches the size of each individual subgrid, we perform a

NNLS optimization on all parameters contained in S1. The

output is stored in S2, forming the second stage of the

multi-stage process. In each successive stage, we collect

only the non-zero entries of the previous NNLS optimi-

zation. When the desired resolution is obtained, the final

storage grid is once more processed by NNLS and the

resulting elements of Sf are now representative of the

solutes and their relative concentrations present in the

sedimentation velocity experiment. In this process, it is

important that the entire parameter space is covered by

each grid. Clearly, each grid covers a slightly different

parameter space, but the overall coverage remains at most

within 2ds and 2dk. To guarantee that the required

parameter space is actually covered by each grid, we

increase the original search space determined with the van

Holde—Weischet analysis and the estimate for the mini-

mum and maximum f/f0 at both ends of each axis by ds and

dk, respectively. This adds only an insignificant amount of

extra space to be searched by the algorithm. Parallelization

is achieved by distributing each subgrid simulation and

NNLS fit to a different processor, collecting only the

results for the storage grid. Communication between pro-

cessors as implemented in UltraScan (Demeler 2005) is

accomplished with the Message Passing Interface (Brookes

et al. 2006, http://www.open-mpi.org/).

Simulation of grid elements

We use the ASTFEM solution proposed by Cao and

Demeler (2008) to simulate Lamm equation solutions for

each grid point. In order to reduce computational effort it is

possible to take advantage of the invariance shown in Eq.

(9), where a is a multiplier that covers the entire desired

range of s and D values. The same solution can be used for

different s and D values as long as the solution is calculated

for the entire time range.

Cðas; aDÞr;t ¼ Cðs;DÞr;at: ð9Þ
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Iterative refinement

We have empirically shown that solving the iterative

problem involving multiple low resolution sub-grids is

equivalent to solving the high-resolution grid covering the

same combined grid points if the following additional

operation is performed: The non-zero grid points evaluated

at the final state Sf are joined with each original grid in S0

and reprocessed. The analysis is then repeated until con-

vergence is obtained (Brookes et al. 2006). This analysis

produces a sparse parameter distribution with discrete

solutes identified from the experimental data. Adding the

sparse set of solutes obtained in Sf only marginally

increases the size of grids in S0, and by judiciously

choosing the original grid size any problem can be readily

solved on a moderately equipped PC. It should be pointed

out that the iterative refinement described here will not

converge to exactly the same solution when time- or

radially invariant noise corrections are performed simul-

taneously. However, differences are negligible and are

much smaller than the noise level in a typical ultracentri-

fugation experiment.

Results and discussion

2DSA—Monte Carlo analysis of a 2-component system

with heterogeneity in mass and shape

Due to the large number of fitting parameters, the solution

obtained with the 2DSA method is overdetermined and

uniqueness is not guaranteed. The higher the resolution, the

larger the number of fitting parameters and a higher

potential for degeneracy. To study the effect of a large

number of fitting parameters on the solution, we have

systematically evaluated the robustness of the solution as a

function of resolution and number of fitting parameters. In

this test, all fitting solutes represented by the fitting

parameters are distributed over a regular grid with identical

limits in both dimensions. Our test system consists of a

globular protein (henn egg lysozyme) and an elongated

molecule (a 208 bp linear fragment of double-stranded

DNA), mixed in approximately equally absorbing amounts.

This system was chosen because it illustrates the ability of

the 2DSA to resolve a system that is heterogeneous in

molecular weight and also heterogeneous in shape, and

because the individual components are well studied and

have known hydrodynamic properties and molecular

weights. The mixture was run at 42,000 rpm in 200 mM

NaCl and 25 mM TRIS buffer at pH 8.0 in standard 2

channel centerpieces. Velocity data were collected for 3 h

and at 260 nm. Time invariant noise was subtracted as

described in Schuck and Demeler (1999) and only sto-

chastic noise remained in the data. The resulting data were

fitted with the 2DSA method using 50 Monte Carlo itera-

tions (Demeler and Brookes 2008), using the iterative

refinement method with a maximum of 5 iterations. The

limits of the frictional range was set from 1 to 4, and the

limits of the sedimentation coefficient range was set from 1

Fig. 1 a Initial grid spanning entire s and k parameter space with a

sparse representation of each parameter dimension. b Grid evaluation

points after one iteration of grid movements. Black initial grid. Purple
grid displacement by dk. Blue grid displacement by ds. White grid

displacement by ds and dk. c Typical storage grid S for a

heterogeneous sample after one iteration of grid displacements;

darkness of points indicates concentration level; white indicates zero

concentration, pink indicates a small concentration, while dark purple

indicates high concentration. Solutes get returned with discrete values

of s and k
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to 10 s. The grid was built with the following 5 resolutions

(s values x frictional ratio values x grid movings): 1. 100

(10 9 10 9 1); 2. 400 (10 9 10 9 4); 3. 10,000 (10 9

10 9 100); 4. 40,000 (10 9 10 9 400); 5. 90,000 (10 9

10 9 900). From the results, we plotted the RMSD of each

fit, the mean and 95% confidence intervals for s and k, and

the molecular weight and partial concentration for each

species against the grid resolution. The results are shown in

Fig. 2. From this analysis, we made the following

observations:

1. The 2DSA is very robust and additional degeneracy

introduced by increasing the resolution of the grid does

not degrade the reliability of the solution. In fact, the

opposite occurs, a higher resolution better defines the

mean and reduces the 95% confidence intervals, and

the results are more consistent with known values for

these species. While the number of solutes increases

with increasing number of fitting parameters, the

relative positions of these solutes stay entirely confined

to a narrow grid region in the parameter space, proving

an extreme robustness against degeneracy of our

approach. These results show that consideration of

additional parameters has no effect on the detection of

the actual signal present in the data.

2. A 10 9 10 grid suggested by Brown and Schuck

(2006) is clearly insufficient to resolve even a mod-

erate s-value range from 1 to 10 s and a k range from 1

to 4. Mean and 95% confidence intervals suggest a

very poor description of the data at this resolution and

clearly produce the wrong molecular weights for both

species.

3. The 2DSA method shows very high precision and

accuracy, reproducing faithfully the known molecular

weights when adjusted for the appropriate partial

specific volumes (0.724 ccm/g for lysozyme and

0.55 ccm/g for DNA).

4. The 95% confidence intervals obtained from the Monte

Carlo approach clearly show a narrower range for

DNA than for lysozyme. This effect can be explained

by considering the basic signals contributing to this

data: sedimentation and diffusional transport. The

sedimentation signal is more pronounced for the larger

component (DNA), and the diffusion signal will be

markedly smaller when compared to the smaller, more

globular lysozyme, producing a better resolution for

the DNA than for the lysozyme. The shape or frictional

ratio information is heavily influenced by the diffusion

coefficient, which is derived from the shape of the

boundary, or the boundary spread. Heterogeneity (or

poor sedimentation resolution) has a similar spreading

effect on the boundary, and spreading due to micro-

heterogeneity can be misinterpreted as a diffusion

coefficient that is too large. Therefore, when compo-

sition is poorly defined because of slow speed or slow

sedimentation and large diffusion, the low confidence

in the sedimentation coefficient translates into a

uncertainty about diffusion and shape, which explains

this difference in the 95% confidence intervals of DNA

Fig. 2 2DSA Monte Carlo analysis of velocity data from a mixture of

a 208 bp DNA fragment (black lines) and hen egg lysozyme (blue
lines). Heavy lines indicate the mean, thin lines represent 95%

confidence intervals for the parameter. The results for several

parameters from multiple grid resolutions are compared. a Frictional

ratio; b sedimentation coefficient (corrected to standard conditions); c

molecular weight, horizontal lines indicate theoretical molecular

weight based on sequence; d partial concentration and the residual

mean square deviation of the fit (red line). Reliable results are

obtained after a minimum of 10,000 iterations, higher resolutions do

not improve the results significantly
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and lysozyme. On the other hand, if the diffusion

signal is low because of high rotor speed and short run

times, and not much diffusional transport occurs, the

uncertainty in shape arises from lack of time to let the

sample diffuse before being pelleted. As is shown in

‘‘Global fitting of multi-speed data’’ this problem can

be mitigated by globally fitting multiple speeds of the

same sample.

5. In order to measure the effect iterative refinement has

on the quality of the observed results, we also

performed the same analysis without using the iterative

refinement approach (data not shown). This approach

showed identical trends as we observed in the optimi-

zation including iterative refinement, however, the

results were less regular than those obtained when

iterative refinement was employed. It can therefore be

concluded that an additional benefit is derived from

iterative refinement, especially when only a moderate

grid resolution is used.

6. As additional parameters are added, an increased

tendency to fit small frequency noise contributions is

apparent, with a concentration of such points along the

maximum frictional ratio boundary. Since the ampli-

tude of these signals always remains within the noise

level of the experimental data, and because their

position is fixed at the upper frictional ratio limit, such

solutes are easily identified and excluded. In addition,

increasing the frictional ratio upper limit moves such

noise contributions along with the upper frictional ratio

boundary. We have introduced a Monte Carlo approach

that effectively attenuates the relative signal from such

noise contributions by amplifying intrinsic solute signal

linearly, but amplification of stochastic noise only

occurs with a factor of square root of two, which

reduces the contribution of artifacts due to stochastic

noise (Demeler and Brookes 2008). Pseudo-3D plots

showing the difference between the lowest and highest

grid resolution are shown in Fig. 3. The Monte Carlo

results for lysozyme and DNA are shown in Table 1.

Global fitting of multi-speed data

In an effort to better quantify the level of detail that can be

obtained from a sedimentation velocity experiment when

analyzed with the 2DSA method, we looked at ways to

improve experimental signal. It is well known that

improved information can be obtained from sedimentation

equilibrium experiments when multiple speeds and multi-

ple concentrations of the same data are measured and

globally analyzed (Johnson et al. 1981). In this analysis

approach, certain parameters such as molecular weight, and

equilibrium constants can be treated as global parameters

because they are invariant and governed by conservation of

mass considerations. The similar approach can be used for

velocity experiments. We have implemented a global

2DSA fitting method for non-interacting systems to glob-

ally fit experiments of samples with invariant composition.

This approach imposes constraints on fits from all included

data sets that require that all non-zero solutes obtained in

the fit are present in the same relative ratio in all data sets.

Different signals originating from dilutions or different

optical systems or different centerpiece geometries are

accounted for by scaling the amplitudes of all solutes with

a different scalar multiplier for each datasets. The experi-

ments can be performed at different speeds, or by different

acquisition methods. Even data from different cell geom-

etries can be fitted globally, such as experiments performed

in band-forming Vinograd cells or standard 2-channel

Fig. 3 Pseudo-3D plots for solute distributions for the 2DSA Monte

Carlo results shown in Fig. 2 for the highest and lowest grid

resolution examined. a Grid resolution of 100 solutes; b grid

resolution of 90,000 solutes. At the low resolution the composition

is poorly defined and solute peaks are split, at high-resolution both

species are well defined in narrow regions without any significant

peak splitting, noise contributions are well separated and identifiable

at the upper frictional ratio fitting limit (k = 4). Globular shape of

lysozyme and elongated shape of DNA is clearly reproduced by

fitting result. The color scale represents the signal of each species in

optical density units
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centerpieces. We compared the information obtained from

fitting data from a simulated system with known compo-

sition under four conditions: 10 krpm conventional

centerpiece, 60 krpm conventional centerpiece, 10, 30, and

60 krpm conventional centerpiece, fitted globally, and 10,

30, and 60 krpm globally for both conventional and band-

forming Vinograd experiments together. Our test system

consists of equal concentrations of a linearly elongating

aggregate with five noninteracting components: monomer

(25,000 Dalton, frictional ratio: 1.2), dimer (50,000 Dalton,

frictional ratio: 1.4), tetramer (100,000 Dalton, frictional

ratio: 1.6), octamer (200,000 Dalton, frictional ratio: 1.8),

hexadecamer (400,000 Dalton, frictional ratio: 2.0). Sto-

chastic noise of 1% typical in a UV-absorbance XLA was

added to all simulated data before fitting. All experiments

were simulated to contain 70 equally spaced scans over a

time period that was selected such that the total force

exerted on the sample over the entire experiment was

identical regardless of speed, and assured that all samples

either pelleted or approached equilibrium. This led to

128 h and 12 min for 10 krpm, 14 h and 12 min for

30 krpm, and 3 h and 30 min for 60 krpm. In all cases a

column of 14 mm was simulated extending from a

meniscus of 5.8 to a cell bottom of 7.2 cm. The results

show that the 2DSA—Monte Carlo method could in each

case correctly map out the parameter space (Fig. 4). The

difference between the analysis conditions was found in the

resolution with which the individual components could be

resolved. Specifically, we made the following observations

from the data shown in the pseudo-3D plots:

1. The single speed analysis of the 10 krpm data using

conventional centerpieces shows a poorly resolved

band of signal, covering the correct range. Maxima can

be detected near the expected positions in the 2D grid.

Resolution in the horizontal dimension (molecular

weight or sedimentation coefficient is worst from all

conditions, but the frictional range is better defined

than the high speed experiment (Fig. 4a).

2. The single speed analysis of the 60 krpm data using

conventional centerpieces shows a more precise

definition of the horizontal domain than the single

speed 10 krpm run, but the frictional range is more

poorly defined than in the low speed data, especially

for the higher molecular weight species. This is

presumably caused by lack of diffusion signal for the

higher molecular weight species, which sediment

quickly at this speed. Also, some peak splitting is

observed for the higher molecular weight species

(Fig. 4b).

3. A global, multi-speed analysis of data from 10, 30 and

60 krpm data using conventional centerpieces offers a

slight improvement of the single speed experiments by

eliminating the peak splitting of the medium sized

species (100,000 Dalton). However, the high molec-

ular weight species (400,000 Dalton) peak is still

poorly defined in the shape domain, and the peak is

still split (Fig. 4c).

4. A further improvement can be obtained by combining

the data from the conventional centerpieces with band-

sedimentation data performed at the same three speeds

and globally fitting all six experiments (Fig. 4d). In

this fit, all peak splitting has been resolved and all

determined signals fit exceptionally well to the starting

parameters, producing an optimal description of the

data.

Summary

We have presented a novel algorithm for efficiently fitting

sedimentation velocity data to high-resolution grids based

on finite element solutions of the Lamm equation. This

algorithm is suitable for serial calculation on a single

processor or can be used in a parallel environment on a

multi-processor machine or supercomputer. We have

shown that low resolution grids as proposed by Brown and

Schuck (2006) are insufficient to obtain reliable informa-

tion from a two-dimensional approach. Another result of

our study shows that globally fitting data from different

speeds and different centerpiece geometries can further

Table 1 Statistics for the 2DSA Monte Carlo analysis of lysozyme and a 208 basepair DNA fragment

Lysozyme 208 basepair DNA

Molecular weight (Dalton) 14,325 [14,306] (7,903, 18,790) 137,800 [135,725](120,860, 154,980)

Sedimentation coefficient (s, s20,W) 1.783 9 10-13 (9.492 9 10-14, 2.231 9 10-13) 5.498 9 10-13(5.422 9 10-13, 5.615 9 10-13)

Diffusion coefficient (cm2/s, D20,W) 1.085 9 10-6 (8.650 9 10-7, 1.221 9 10-6) 2.156 9 10-7(1.958 9 10-7, 2.425 9 10-7)

Frictional ratio 1.22 (0.955, 1.72) 2.48 (2.26, 2.65)

Partial concentration 0.293 OD 0.350 OD

Values in curved parenthesis are 95% confidence intervals, values in square brackets are known molecular weights. Source: Lysozyme by mass

spectrometry measurement: http://www.astbury.leeds.ac.uk/facil/MStut/mstutorial.htm, DNA molecular weight calculated with UltraScan

(Demeler 2005) from sequence composition assuming a 0.75 ratio of Na?/basepair bound (Manning 1969). OD optical density at 260 nm
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incrementally enhance the resolution obtained with the

2DSA method. The global method shows also that further

improvement of the results is most likely a function of

signal quality, and can only be achieved by improving the

detectors.

For non-interacting species, the 2DSA approach is

general and model-independent, and does not depend on

prior knowledge of the underlying model, for mixtures of

rapidly equilibrating solutes the 2DSA approach can still

provide approximations for solute distributions, although

interactions coefficients such as equilibrium and rate con-

stants can not be obtained by this approach. The 2DSA

method can simultaneously resolve heterogeneity in shape

and in molecular weight or sedimentation coefficients at

very high-resolution, producing very well defined and

narrow solute boundaries. The only user input required is a

knowledge of the fitting limits, which can be determined

with the van Holde–Weischet method (Demeler and van

Holde 2004) or the dC/dt method (Stafford 1992). Because

this method does not make any assumptions of constant

frictional ratios for all species as the C(s) method does in

SedFit (Schuck et al. 1998), the 2DSA is more rigorous and

better able to also reliably resolve molecular weights, as

long as the partial specific volume is known.
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