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ABSTRACT We describe an extension of the adaptive space-time finite element method (ASTFEM) used in the solution of the
Lamm equation to the case of multicomponent reacting systems. We use an operator splitting technique to decouple the
sedimentation-diffusion process from the reaction process. The former is solved with an ASTFEM approach based on the Petrov-
Galerkin method and on adaptive moving grids, and the latter is solved with the implicit midpoint Euler’s method. Our solution can
effectively eliminate the sedimentation errors for each component or species involved in the reaction, and it is free from oscillation
near the cell bottom. It offers second-order accuracy, and guarantees conservation of mass without any additional postprocessing,
and it permits modeling of multicomponent, equilibrating systems where the reaction rate can be kinetically controlled between an
instantaneous reaction and a noninteracting mixture. The proposed ASTFEM solution provides improved efficiency and accuracy
compared to classical approaches, especially when medium-sized and large molecules are modeled.

INTRODUCTION

Analytical ultracentrifugation is an effective technique for

characterizing biological macromolecules in solution. It per-

mits the determination of composition, assembly state, and

conformational properties of biological macromolecules in a

near-physiological solution environment, where pH, ionic

strength, temperature, and concentration can be conveniently

controlled. The sedimentation and diffusion transport of a

single, ideal solute in the analytical ultracentrifugation cell is

described by the Lamm equation (1). Recently, we introduced

an efficient and accurate adaptive space-time finite element

solution of the Lamm equation (ASTFEM (2)). While this

approach is sometimes used to model interacting systems, this

treatment does not take the dynamic properties of the reaction

into account, where the concentration profile may be per-

turbed during the sedimentation and diffusion transport due to

reactions occurring between the sedimenting solutes. By in-

cluding reaction source terms in the Lamm equation, a more

rigorous approach for modeling reacting systems can be

proposed which includes a description of the equilibrium

constants and the kinetic rate constants of the reactions.

Classical finite element solutions for reacting systems based

on uniform grids of the Lamm equation have been proposed

earlier by Claverie (3) and Todd et al. (4), and a software

program based on these approaches has been developed by

Stafford and Sherwood (5). An improved solution, the so-

called moving hat method, for noninteracting solutes and the

case of instantaneously reacting reversible self-associations

has been proposed by Schuck (6).

For systems with large molecular weights and high sedi-

mentation speeds, classical methods can suffer from large

errors originating from the sedimentation term. Such errors

manifest themselves in a smoothing of the concentration

boundary and in oscillations of the solution at the bottom of

the cell. This smoothing effect causes an overestimation of

the diffusion coefficient (with a concomitant underestimation

of the molecular weight), and in severe cases the oscillations

can propagate back into the solution column, affecting the

entire solution. The moving hat method (6) eliminates the

sedimentation error in the numerical solutions by shifting

the grids toward the cell bottom at the same speed as the

sedimenting solute. The moving hat method represents a

major improvement over Claverie’s method for single spe-

cies models, but it does not eliminate the oscillations of the

solution near the cell bottom, fails to account for the differ-

ences in sedimentation speed of multiple components in the

reacting case, and requires postprocessing of the solution to

assure mass conservation. In the following discussion we refer

to ‘‘components’’ to mean both distinct solutes encountered in

hetero-associating systems, and also oligomeric species en-

countered in reversible self-associating systems.

The ASTFEM approach (2) uses a grid similar to that from

the moving hat method to eliminate sedimentation error, but

also carefully refines the grid spacing at the bottom of the cell

which eliminates the oscillations seen in other solutions. In

addition, due to the rigorous space-time finite element for-

mulation, it does not require any postprocessing to maintain

conservation of mass. Here we describe an extension of the

ASTFEM approach to the general case which also includes

reacting systems of multiple components, and offers a direct

solution of the Lamm equations involving sedimentation,

diffusion, and the reaction mechanisms.
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By extending ASTFEM to multicomponent reacting sys-

tems we encounter the problem that the grids used for

ASTFEM (2) (as well as for the moving hat method (6))

move with different speeds for different components in the

system, but the reaction should occur on a common grid. To

overcome this difficulty, we use a special type of the Petrov-

Galerkin method, the localized adjoint method proposed by

Bouloutas and Celia (7) and Celia et al. (8), to construct the

finite element solutions. A key point in this approach is to use

different test functions to follow different sedimentation

speeds of each Lamm equation, while keeping all the un-

known partial concentrations defined on the same grid. This

treatment not only eliminates the sedimentation errors for all

components, but also avoids the need of interpolation of

numerical solutions in the process of simulation. We also

include a specially designed adaptive grid with high mesh

densities near the cell bottom, which eliminates the oscilla-

tion of the sedimentation profile near the bottom of the cell.

To treat the reaction terms in the multicomponent systems

efficiently, we employ an operator splitting technique pro-

posed by Strang (9). It separates the sedimentation-diffusion

process from the reaction process in each time step. The

former corresponds to a system of homogeneous Lamm

equations which can be solved independently for each

component, while the latter is a system of ordinary differ-

ential equations (ODE), which can be solved independently

for each radial point. Both of them can be implemented in

parallel, promising performance advantages with increas-

ingly common multicore computer chip architectures.

The combination of ASTFEM and the operator splitting

method for multicomponent reacting systems offers several

notable advantages:

1. Approximation errors originated from sedimentation

terms are effectively eliminated for all components.

2. Numerical solutions are free from oscillation near the

bottom of the cell.

3. The solution is of second-order accuracy in both space

and time variables; namely, when the step sizes in radial

and time directions are halved, the solution error is

approximately reduced by a factor of 4.

4. The mass conservation is guaranteed automatically.

We tested our solution with several examples including

monomer-dimer and monomer-trimer-hexamer associations.

It is found that for systems with large molecules with large

s/D ratios, the accuracy of our solution is particularly ad-

vantageous over the classical finite element method (FEM)

based on fixed adaptive meshes, while the computational

work of the two are comparable. For systems with relatively

small molecules or velocity experiments at low rotor speed,

our scheme is only slightly better than the fixed mesh method.

These conclusions are true for all reaction rates ranging from

instantaneous reaction to noninteraction. It should be noted

that for cases where improved accuracy is not required, our

method achieves the same accuracy as other methods with a

reduced computational effort, which is particularly advanta-

geous for recently introduced optimization methods that re-

quire a large number of repeated evaluations of the Lamm

equation (10–13).

NUMERICAL SCHEME FOR MULTICOMPONENT
REACTING SYSTEMS

Let m and b be the radii at the meniscus and at the bottom of

the cell, and v be the angular velocity. Let Ck(r, t) be the

partial concentration of the kth component. The values sk and

Dk are the component’s sedimentation and diffusion coeffi-

cients, respectively. Then the velocity experiment of multi-

component reacting systems can be modeled by the following

partial differential equations,

@Ck

@t
1

1

r

@ðrJkðCkÞÞ
@r

¼ qk; k ¼ 1; 2; � � � ;M; (1)

where

JkðCkÞ ¼ �Dk

@Ck

@r
1 skv

2
rCk

is the total flux for the kth component, and qk¼ qk(C1, ���, CM)

is a function characterizing the contribution to the change

in concentration of the kth component from the reactions in

the system. The change in concentration is determined by

the equilibrium constants and reaction rates, as well as the

binding stoichiometries of the components. The boundary

condition for Eq. 1 requires that there is no flux at both ends

of the cell, i.e., Jk(Ck) ¼ 0 at the meniscus and at the bottom

for all k ¼ 1, 2, ���, M.

Operator splitting scheme decoupling
sedimentation-diffusion and reaction

There are several issues to be considered when we choose an

efficient and robust discretization scheme for solving Eq. 1.

First of all, a straightforward discretization of Eq. 1 couples

the sedimentation-diffusion and the reaction processes. De-

pending on the solutes of the system, these processes can

occur on significantly different timescales. If we treat the

reaction terms explicitly as proposed earlier by Claverie (3),

then excessively small time steps will be required to maintain

the stability of the scheme, particularly when the reaction

rates are high. On the other hand, if the reaction term is

treated implicitly, then the coefficient matrix for the linear

system of algebraic equations has to be recomputed at every

time step, which can be very time-consuming. In addition,

suppose we use NG grid points in the radial direction for

discretization, then a coupled discretization would result in a

large system of M 3 NG equations at every time step.

To address these issues, we use an operator splitting

method to decouple the sedimentation-diffusion transport

from the reaction process. With an operator splitting method,

we can alternate between the simulation of the pure sedi-
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mentation-diffusion process and the calculation of the pure

reaction process. As a result, each process can be solved in-

dependently and efficiently. This idea has been widely used

in simulations of complex systems involving chemical and

biological reactions such as combustion, air pollution, and

aquatic chemistry (for examples, see (14,15)). In analytical

ultracentrifugation, the approach chosen by Cann and Goad

(16) using finite differencing, and later by Todd and

Haschemeyer (4) using finite elements, for the simulation of

instantaneous associations is an example of an operator

splitting method. In their numerical scheme, each sedimen-

tation-diffusion step is followed by an instantaneous reaction

step by recalculating the partial concentrations of all com-

ponents according to the reaction equations. In this approach,

a kinetic limitation on the reaction cannot be considered.

Among many versions of the splitting schemes, we choose a

sequential noniterative scheme originally proposed by Strang

(9) for its efficiency (no iterations are needed) and its second-

order (in time) accuracy (refer to (14) for examples of model

analysis and comparison of several operator splitting schemes).

With the Strang-splitting method, the evolution of the

solution from time tn to tn11¼ tn 1 dt consists of three stages:

Stage 1: Sedimentation-diffusion from time tn to tn11/2 ¼
tn 1 dt/2.

Stage 2: Reaction for a time period of dt, say from tn to

tn11.

Stage 3: Sedimentation-diffusion from tn11/2 to tn11.

The initial condition for each stage is chosen to be the

solution at the end of the previous stage, and the solution at

tn11 in Stage 3 is taken as the approximate solution to Eq. 1 at

time tn11. This procedure can be described in formulas as

follows: first we solve for each C̃k; k¼ 1, 2, ���, M, separately

from a sedimentation-diffusion equation,

@C̃k

@t
1

1

r

@ðrJkðC̃kÞÞ
@r

¼ 0; tn , t , tn11=2

C̃kjt¼tn
¼ Ckjt¼tn

;
;

8<
: (2)

then we solve for all Ĉk from the following system of ODEs

for the reaction

@Ĉk

@t
¼ qkðĈ1; � � � ; ĈMÞ; k ¼ 1; 2; � � � ;M; tn , t , tn11;

Ĉkjt¼tn
¼ C̃jt¼tn11

;

8<
:

(3)

and finally we solve again for each ˜̃Ck from

@ ˜̃Ck

@t
1

1

r

@ðrJkð ˜̃CkÞ
@r

¼ 0; tn11=2 , t , tn11

˜̃Ckjt¼tn11=2
¼ Ĉkjt¼tn11

;

:

8><
>: (4)

Note that each equation in Stage 1 is a homogeneous Lamm

equation. These equations are independent of each other, and

can be solved separately and in parallel. Stage 3 is a similar

case. Stage 2 involves a system of ODEs for each radial

position. At different radial points, these systems are inde-

pendent of each other, hence can be solved separately. In the

next two subsections we describe the solutions in the three

stages. Since Stage 3 is identical to Stage 1, except with

different initial conditions, we only explain the solution for

Stages 1 and 2 in detail.

Adaptive space-time finite element method
(ASTFEM) for sedimentation-diffusion equations

First, we consider the solution of the Lamm equations in

Stage 1. As demonstrated in our previous work (2) and by

Schuck (6), the use of moving grids for finite element dis-

cretizations of Eq. 2 minimizes sedimentation errors and

improves substantially the solution accuracy of the Lamm

equation. However, using ASTFEM or the moving hat

method directly to solve a reacting multicomponent system is

not advisable because the solutions for different components

would be defined on different grids, due to the dependence of

the ideal grid speed on the sedimentation coefficient of each

component. This is a problem because calculations in Stage 2

require all components to be specified on the same grid.

An alternative approach, which was implemented by

Schuck (6) for the moving hat method, calculates a finite

element solution for each component using the same moving

grid either determined by the sedimentation speed of one of

the components, or determined by the average of the speeds

of all reacting components. This option represents an unsat-

isfactory compromise because sedimentation errors are only

partially canceled. Clearly, when the sedimentation speeds

for the reacting components in the system are very different,

the sedimentation errors for one or more components in the

reaction will remain significantly different from the average,

and the overall solution accuracy will suffer.

To overcome this difficulty, we use a specially adapted

Petrov-Galerkin method and the localized adjoint method

proposed by Bouloutas and Celia (7) and Celia et. al. (8) to

construct the space-time finite element scheme. More spe-

cifically, we define the approximate solution for all compo-

nents on the same mesh, but define the test functions on

different meshes, where each mesh follows the sedimentation

speed of a particular component to eliminate the sedimenta-

tion errors for the corresponding Lamm equation in Eq. 2.

The idea of using the localized adjoint method has been ex-

tensively studied and used to develop the various Eulerian-

Lagrangian localized adjoint methods; for other examples,

we refer the reader to the literature (17–19).

To introduce this method, we first derive the weak for-

mulation of Eq. 2. For each k ¼ 1, 2, ���, M, let v be an ar-

bitrary function defined on m , r , b and on tn , t , tn11/2.

We then multiply with r v on both sides of Eq. 2 and integrate

over the space-time slab [m, b] 3 [tn, tn11/2]. It follows from

integration by parts (with respect to r) and the zero flux

boundary condition that
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Z tn11=2

tn

Z b

m

@ðrJkðC̃kÞ
@r

v drdt ¼
Z tn11=2

tn

Z b

m

�
Dk

@C̃k

@r

@v

@r

� skv
2
rC̃k

@v

@r

�
rdrdt: (5)

Also, it follows from integration by parts (with respect to t)
thatZ tn11=2

tn

Z b

m

@C̃k

@t
v rdrdt ¼

Z b

m

ðC̃kvÞjtn11=2

tn
rdr

�
Z tn11=2

tn

Z b

m

C̃k

@v

@t
rdrdt: (6)

Combining the above two formulas, we obtain the weak

formulation of Eq. 2,

Z b

m

ðC̃kvÞjtn11=2

tn
rdr 1

Z tn11=2

tn

Z b

m

�
Dk

@C̃k

@r

@v

@r

� C̃k

�
@v

@t
1 skv

2
r
@v

@r

��
rdrdt ¼ 0: (7)

It was observed by Barrett and Morton (20) that, by choosing

the functions v(r, t) such that

@v

@t
1 skv

2
r
@v

@r
¼ 0; (8)

the last two terms on the left-hand side of Eq. 7 would be

canceled, and Eq. 7 essentially corresponds to a pure diffu-

sion problem whose solution can be easily obtained. Fur-

thermore, Eq. 8 can be fulfilled if v is constant along suitable

curves r ¼ r(t). Indeed, by the chain rule for derivatives,

v(r(t), t) ¼ const. on such curves implies that

@v

@r

dr

dt
1
@v

@t
¼ 0:

After subtracting the above equation from Eq. 8, we obtain an

equation for defining the curve r ¼ r(t) as

dr

dt
¼ skv

2
r:

The solution is

rðtÞ ¼ rðtnÞeskv
2ðt�tnÞ: (9)

These curves are called the characteristic lines of the

sedimentation equation. A key point in constructing the

ASTFEM scheme for each of the Lamm equations in Stage 1

is to choose the test functions such that they are constant

along the characteristic lines determined by different values

of sk as in Eq. 9.

Space-time mesh and basis functions

To construct our adaptive space-time finite element scheme

for Eq. 2, we need to specify a common space-time mesh on

which the approximate solutions are defined for all compo-

nents. We also need to select M different space-time meshes

aligned approximately with M sets of characteristic lines

described in Eq. 9 to define the test functions. Suppose NG is

the total number of points used in the radial direction, and

m ¼ r1,r2, � � �,rNG
¼ b are their radial coordinates. We

can connect each pair of points{(rj, tn), (rj11, tn11/2)}, j ¼
1, ���, NG – 1, with straight line segments. Then the space-time

slab [m, b] 3 [tn, tn11/2] is divided into NG – 2 quadrilateral

and 2 triangular (one at each end) elements as follows (see

Fig. 1):

We now introduce a basis function fn
j associated with each

grid point (rj, tn):

f
n

j ðr; tÞ ¼
1; atðrj; tnÞ;
0; at all other grid points:

�

Inside each element, fn
j is defined as the pull-back of a linear

or bilinear polynomial defined on the standard triangular or

quadrilateral element (refer to (2) for more details). The

expression fn
j is a zero function in all elements except Ej

and Ej11, which are adjacent to the line through (rj, tn) and

(rj11, tn11/2). Similarly, we introduce the basis function f
n11=2
j

associated with grid (rj, tn11/2):

f
n11=2

j ðr; tÞ ¼ 1; atðrj; tn11=2Þ;
0; at all other grid points

�

and f
n11=2
j is a zero function in all elements except Ej–1

and Ej.

Now, let cn
j and c

n11=2
j be the approximate values of

C̃kðr; tÞ at the grid points (rj, tn) and (rj, tn11/2), respectively.

We define the following continuous function c̃ðr; tÞ to ap-

proximate C̃kðr; tÞ (to simplify the notation, throughout this

and the next subsections we omit the dependence of c̃ on

component index k, with the understanding that c̃ refers only

to the kth component):

Ej ¼
triangleðm; tnÞ; ðr2; tn11=2Þ; ðm; tn11=2Þ; for j ¼ 1;
quadrilateralðrj�1; tnÞ; ðrj; tnÞ; ðrj11; tn11=2Þ; ðrj; tn11=2Þ; for 2 # j # NG � 1;
triangleðrNG�1; tnÞ; ðb; tnÞ; ðb; tn11=2Þ; for j ¼ NG:

8<
:
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c̃ðr; tÞ ¼ +
NG

j¼1

½c̃n

j f
n

j ðr; tÞ1 c̃
n11=2

j f
n11=2

j ðr; tÞ�: (10)

It follows that on each element Ej, c̃ðr; tÞ is the pull-back of a

linear or bilinear polynomial defined on the standard ele-

ments with the specified values at the element vertices.

Next, we describe how to choose the test functions for the

kth component to make Eq. 8 hold approximately. For this

purpose, let m # r̃1,r̃2, � � �,r̃NG
¼ b be a set of radial

points on the line t ¼ tn. Their positions are determined such

that the line from ðr̃j; tnÞ to (rj11, tn11/2) follows approxi-

mately the characteristic lines given by Eq. 9. Note that the

characteristic lines are determined by the sedimentation

speed sk. Hence different components correspond to different

sets of r̃j. In the next section we describe the details on how to

choose their positions. We connect ðr̃j; tnÞ and (rj11, tn11/2)

for all j ¼ 1, 2, ���, NG – 1 to form NG – 1 quadrilateral ele-

ments and one triangular (the rightmost) element:

We introduce a series of test functions cj(r, t) as follows:

For 2 # j # NG – 1, we define the values of cj on the grid

points as

cj ¼
1; atðr̃j�1; tnÞandðrj; tn 1 1=2Þ
0; at all other grid points

�

and extend cj into each element Ẽi; 1 # i # NG, by using the

pull-back of linear or bilinear polynomials on standard

elements as before. For j ¼ 1, we require

c1 ¼
1; atðm; tnÞandðm; tn11=2Þ
0; at all other grid points:

�

For j ¼ NG, we require

cNG
¼ 1; atðr̃NG�1; tnÞ; ðb; tnÞandðb; tn1 1=2Þ

0; at all other grid points:

�

It is noted that each cj is nonzero only in two elements, Ẽ n
j�1

and Ẽj next to the line through ðr̃j�1; tnÞ and (rj, tn11/2).

System of linear equations

Now we consider the system of algebraic equations resulting

from the finite element discretization of Eq. 2. First, we put

the approximate solution c̃ expressed as Eq. 10 into the weak

formulation in Eq. 7, and choose v¼ cj. We have for each i¼
1, 2, ���, NG that

+
NG

j¼1

ai;jc̃
n11=2

j ¼ +
NG

j¼1

bi;jc̃
n

j ; (11)

where

ai;j ¼
R b

m
f

n11=2

j cirdr 1
R tn11=2

tn

R b

m

�
Dk

@f
n11=2

j

@r

@ci

@r

�f
n11=2

j

�
@ci

@t
1 skv

2
r
@ci

@r

��
rdrdt;

bi;j ¼
R b

m
f

n

j ci rdr 1
R tn11=2

tn

R b

m

�
Dk

@f
n

j

@r

@ci

@r

�f
n

j

�
@ci

@t
1 skv

2r
@ci

@r

��
rdrdt:

A finite element approach where the test functions {cj} are

different from the basis functions {fj} as we have implemented

here is referred to as the Petrov-Galerkin method. Let matrices

A ¼ (ai, j) and B ¼ (bi, j), and let vectors C̃
ðn11=2Þ ¼ ðc̃ n11=2

j Þ
and C̃

n ¼ ðc̃ n
j Þ. Then Eq. 11 can be put into matrix form:

Ẽj ¼
quadrilateralðm; tnÞ; ðr̃1; tnÞ; ðr2; tn11=2Þ; ðm; tn11=2Þ; for j ¼ 1;
quadrilateralðr̃j�1; tnÞ; ðr̃j; tnÞ; ðrj11; tn11=2Þ; ðrj; tn11=2Þ; for 2 # j # NG � 1;
triangleðr̃NG�1; tnÞ; ðb; tnÞ; ðb; tn11=2Þ; for j ¼ NG:

8<
:

FIGURE 1 Space-time mesh (solid lines) used to define all approximate

solutions and the mesh used to define the test functions for one particular

component (dotted lines).

58 Cao and Demeler

Biophysical Journal 95(1) 54–65



AC̃
n11=2 ¼ BC̃

n
: (12)

The integrals used in the equations for ai, j and bi, j can be

computed numerically with quadrature rules on the standard

elements (see (21) for more details). Since ai, j and bi, j are

independent of time, this calculation is only performed once

for the entire simulation. In addition, note that fn
j and f

n11=2
j11

are nonzero only in two space-time elements, Ej and Ej11,

and that test function cj is only nonzero in two elements, Ẽj

and Ẽj11. If r̃j lies in between rj and rj11 for all j (as is in our

case, see Adaptive Grids for ASTFEM of Multicomponent

Systems below), then the nonzero region (also called the

support) of f
n11=2
j intersects the nonzero region of test

function ci only when j ¼ i – 1, i, i 1 1, i 1 2. Similarly,

the support of fn
j intersects the support of test function ck

i

only when j ¼ i – 2, i – 1, i, i 1 1. This implies that both

matrices A and B have only four nonzero diagonal lines, and

that the linear system Eq. 12 can be solved by using Gaussian

elimination similarly to the tridiagonal linear systems (it

requires ;17 NG arithmetic operations compared with 13 NG

operations for solving tridiagonal systems).

ODE integrator for the reaction process

In this section we consider the solution of the system of

ODEs describing the reaction process in Stage 2 of the op-

erator splitting method. There are a number of ODE inte-

grators that can be used to obtain an approximate solution of

Eq. 3. Given the fact that operator splitting introduces a

second-order error O(dt)2 into the numerical solution, it is not

necessary to employ a higher order ODE integrator to com-

pute the approximate solution from tn to tn11. Considering

also that Eq. 3 may become very stiff when the reaction rates

are high, explicit integrators may put severe restrictions on

the time-step size to maintain the stability of the calculation.

Hence we choose the implicit midpoint Euler scheme to

discretize Eq. 3. More precisely, at each grid point rj, 1 # j #

NG, we find all ĉ n11
1 ; � � � ; ĉ n11

M ; satisfying

ĉ
n11

k � ĉ
n

k

dt
¼ qk

ĉ
n11

1 1 ĉ
n

1

2
; � � � ; ĉ

n11

M 1 ĉ
n

M

2

� �
; 1 # k # M:

(13)

This is a nonlinear system of M algebraic equations which

can be solved with Newton’s iterative method, if an analytical

solution for the equation is not available.

Brief analysis of our scheme

First, note that for the extreme case of noninteracting sys-

tems, we have qk ¼ 0. Hence ĉn11
k ¼ ĉn

k in Stage 2, and our

operator splitting scheme is reduced to the Petrov-Galerkin

method for M independent Lamm equations. In the extreme

case of instantaneous reacting systems, the midpoint Euler’s

method for the second stage of operator splitting becomes

qk

�
ĉ

n11

1 1 ĉ
n

1

2
; � � � ; ĉ

n11

M 1 ĉ
n

M

2

�
¼ 0; 1 # k # M;

which means that the reaction equilibrium is imposed in the

middle of tn and tn11. This is slightly different from Todd and

Haschemeyer’s treatment which imposes the equilibrium at

the end of each time step. Nevertheless, both treatments

should produce a second-order accuracy in the instantaneous

reacting cases. For general finite rate reactions, the midpoint

Euler formula is a second-order scheme, thus the solution

error for Stage 2 is proportional to (dt)2. It is on the same

order as the discretization error introduced by the operator

splitting for the original system; see Carrayrou et al. (14).

Furthermore, the space-time finite element discretization

used in Stages 1 and 3 is equivalent to Crank-Nicolson

discretization in time (2), the solution errors in these two

stages are proportional to N�2 and (dt)2. Therefore, when dt is

chosen proportional to N�1, the overall error of this three

stage operator splitting scheme will be of order N�2. We

determine dt according to N as described by Eq. 15 in the next

section. Our numerical tests confirm the second-order accu-

racy of the solution in all tested cases.

One might wonder if using higher than second-order ODE

integrators in Stage 2 would improve the overall solution

accuracies. For comparison, we tested replacing the midpoint

Euler formula with a higher order semi-implicit Bulirsch-

Stoer method; for details, refer to Press et al. (22). This is a

popular time integrator which offers both the higher order

accuracy and the capability of dealing with stiff ODEs. Our

tests indicate that for the entire range of reaction rates (from

instantaneous reaction to noninteraction), no significant im-

provement of the overall solution accuracy can be observed

with the higher order integrator for Eq. 3, while its compu-

tational cost is at least several times higher than the midpoint

Euler method.

Another important aspect of our scheme is that the total

mass conservation is guaranteed automatically. Since the test

functions used in both Stages 1 and 3 satisfy

+
NG

j¼1

cjðr; tÞ[ 1;

we can derive from Eq. 7 and the initial conditions for each

k ¼ 1, 2, ���, M that

Z b

m

c̃kðr; tn11=2Þrdr ¼
Z b

m

c̃kðr; tnÞrdr ¼
Z b

m

ckðr; tnÞrdr:

Similarly,

Z b

m

˜̃ckðr; tn11Þrdr ¼
Z b

m

˜̃ckðr; tn11=2Þrdr ¼
Z b

m

ĉkðr; tn11Þrdr:

Furthermore, by the law of mass conservation for reactions

+M

k¼1
qk ¼ 0 at all r and t, we have from Eq. 13 that
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Z b

m

+
M

k¼1

ĉkðr; tn11Þrdr ¼
Z b

m

+
M

k¼1

ĉkðr; tnÞrdr

¼
Z b

m

+
M

k¼1

c̃kðr; tn11=2Þrdr:

Combining the above three equations and noting that

ckðr; tn11Þ ¼ ˜̃ckðr; tn11Þ, we have conservation of the total

concentration

Z b

m

+
M

k¼1

ckðr; tn11Þrdr ¼
Z b

m

+
M

k¼1

ckðr; tnÞrdr:

ADAPTIVE GRIDS FOR ASTFEM OF
MULTICOMPONENT SYSTEMS

Next we discuss the construction of radial grids for the

ASTFEM solution. First, we choose the radial positions rj for

the common mesh where all unknown partial concentrations

are defined. Analogous to the ASTFEM approach introduced

in Cao and Demeler (2) for noninteracting systems, the grid

points in the radial direction are grouped into three different

regions: a regular region with an exponential grid spacing

that covers the majority of the cell, a narrow and highly re-

fined region where partial concentration functions are steep

near the bottom of the cell, and a transition region in between

those two regions to ensure a gradual change of the grid

spacing. Let N represent the number of radial grid points we

wish to use for discretization, and let NG represent the total

number of points used for the entire cell (NG is slightly larger

than N because it includes the points in the adaptive region at

the bottom and the transition region). Then define

nk ¼
skv

2

Dk

; 1 # k # M:

Assume furthermore that all nk are rearranged in ascending

order, i.e.,

n1 # n2 # . . . # nM:

Similarly to Cao and Demeler (2), let r*k be the point at which

the steady-state solution of the kth component assumes a

threshold value 1/N. We consider [r*k, b] to be the steep region

for the kth component. It can be verified that

r
�
k � b� 1

nkb
ln

1

2
nkðb2 � m

2ÞN
� �

(see Cao and Demeler (2) for details). It follows that

r
�
1# r

�
2# . . . # r

�
M;

and [r*1, b] covers the steep regions for all components. This

region requires a highly refined grid. To determine the grid

distribution in this region, we follow the same criterion used

for the ASTFEM in Cao and Demeler (2): the local Pèclet

number in each [r*k, b] should be ,1. This implies that in each

interval [r*k, b] the step size should be smaller than

hk ¼
2

nkb
¼ 2Dk

skv
2b
:

Furthermore, we require that the grid spacing decreases from

left to right. To satisfy these requirements, we use the sine

function to determine the grids in the steep region [rM*, b].

Let

Ns ¼ º
p

2
ðb� r

�
MÞ=hMc1 1 ¼ º

p

4
lnðnMðb2 � m

2ÞN=2Þc1 1:

We place Ns points in [r*M, b] as

yj ¼ r
�
M 1 ðb� r

�
MÞsin

�
ð j � 1Þp
2ðNs � 1Þ

�
; j ¼ 1; 2; . . . ;Ns:

The grid spacing in this region can be found as

yj11 � yj � ðb� r
�
MÞ

p

2ðNs � 1Þcos

�
jp

2ðNs � 1Þ

�

� hMcos

�
jp

2ðNs � 1Þ

�
; j ¼ 1; 2; . . . ;Ns � 1:

Therefore, the spacing decreases gradually as j increases. The

leftmost interval is approximately of size hM, while the

rightmost interval is approximately of size p
2Ns

hM; which is

one order of Ns smaller than hM.

Now we determine the grid distribution in [r*k, r*k11] for

1 # k # M – 1. Let Nk be a positive integer. Suppose we wish

to place Nk subintervals in [r*k, r*k11], with their sizes de-

creasing arithmetically from hk at the left-hand side to hk11 at

the right-hand side. This implies that the element sizes are

hk; hk � d; hk � 2d; . . . ; hk � ðNk � 1Þd;

where d is an undetermined number. Because the sum of all

the Nk subintervals is equal to r*k11 – r*k, we have

+
Nk

j¼1

½hk � ð j � 1Þd� ¼ r
�
k11 � r

�
k :

Also, the size of the rightmost subinterval equals hk11, which

implies that hk – (Nk – 1)d¼ hk11. Solving for Nk and d from

the above two equations, we obtain

Nk ¼
r
�
k11 � r

�
k

ðhk 1 hk11Þ=2
;

and

d ¼ hk � hk 1 1

Nk � 1
:

The coordinates for the radial points in the subsection [rk*,

r*k11] of the steep region are given by

yk;j ¼ r
�
k 1 +

j

m¼1

ðhk � ðm� 1ÞdÞ

¼ r
�
k 1 jhk �

1

2
jð j � 1Þd; j ¼ 1; 2; � � � ;Nk:
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Next we determine the grid in the regular and transition

regions. We consider (m, ro) as the regular region and (ro, r*1)

as the transition region, where

ro ¼ r
�
1 �

b

N � 1
ln

b

m

� �
:

Analogously to the literature (2,6), the grid positions in the

regular region are chosen to be

xj ¼ mðb=mÞðj�1Þ=ðN�1Þ
; j ¼ 2; 3; . . . ;Nr; (14)

with

Nr ¼ ºðN � 1Þlogb=m

ro

m

� �
1 1c;

and the grid points in the transition region are given by

tj ¼ r
�
1 � ð2

j � 1Þh1; j ¼ 1; 2; . . . ;Nt;

with

Nt ¼ ºlog2

�
r
�
1 � ro

h1

�
c1 1:

Finally, the grids over the entire cell are composed of all the

points xj in the regular region, all tj in the transition region,

and all yk,j and yj in the steep region, determined in the above

formulas (see Fig. 2). The total number of points is

NG ¼ Nr 1 Nt 1 +
M�1

k¼1

Nk 1 Ns:

This number is typically bigger than N by, at most, a small

percentage (,10%); refer to Table 1 in Cao and Demeler (2).

Grids for test functions

In this section, we determine the coordinates fr̃jg used for

defining the test functions for each of the Lamm equations

(Eq. 2) in Stage 1. Recall that these points should be selected

such that the line through ðr̃j; tnÞ and (rj11, tn11/2) follows

approximately the characteristic lines. Thus we choose fr̃jg
according to {rj} and the sedimentation speed sk. To indicate

the dependence of each set fr̃g on sk, we use in this section

the notation fr̃k
j g.

First, we consider the component with the fastest sedi-

mentation speed. Let smax ¼ max 1#k#M sk be the largest

sedimentation coefficient. Let us assume smax ¼ sM, then by

definition of rj (Eq. 14) for the regular region, it can be ver-

ified that when the time-step size is

dt ¼ 2 lnðb=mÞ
smaxv

2ðN � 1Þ
; (15)

then each grid (rj, tn) moving at sedimentation speed sM

according to Eq. 9 will end up exactly at (rj11, tn11/2).

Therefore, we choose r̃M
j ¼ rj11 for all j in the regular region.

In the transition and steep regions, due to the zero flux

boundary condition, diffusion transport dominates over sed-

imentation transport, and diffusion error is much larger than

the sedimentation error near the bottom. Thus reducing the

sedimentation error by aligning the test function with the

characteristic line is not critical. Therefore, we also choose in

these two regions r̃M
j ¼ rj11; even though the line from

ðr̃j; tnÞ to (rj11, tn11/2) does not follow the characteristic line.

Having defined fr̃M
j g; the ASTFEM scheme for the fastest

component in Eq. 2 is exactly the original ASTFEM for

single-component Lamm equations introduced in Cao and

Demeler (2).

For other components with sk , smax, the above defined

fr̃M
j g is not an appropriate choice for the kth Lamm equation

in Eq. 7, since it has a different characteristic line determined

by sk. For the kth component, we choose r̃k
j by back-tracking

(18) (rj11, tn11/2) at time tn11/2 to tn along its own charac-

teristic line. More precisely, put r(tn11/2) ¼ rj11 and r̃k
j ¼

rðtnÞ into Eq. 9,

rj11 ¼ r̃
k

j e
skv

2
dt=2
:

We have

r̃
k

j ¼ rj11 e
�skv

2
dt=2
:

By the definition of rj and dt,

rj11 ¼ rjðb=mÞ1=ðN�1Þ ¼ rj e
smaxv

2
dt=2
;

hence

r̃
k

j ¼ rj11

�
rj11

rj

��sk=smax

¼ ðrjÞsk=smaxðrj11Þ1�sk=smax ;

i.e., r̃k
j is the geometric mean of rj and rj11. For grids in the

transition and steep regions, we also use the above formula to

determine the coordinates of r̃k
j ; even though rj values are not

given by the exponential function in Eq. 14.

Note that by the above definition, each r̃k
j lies in between

rj and rj11 for all j and k. This ensures that the coeffi-

cient matrices A and B in the linear algebraic systems from

ASTFEM have, at most, four nonzero diagonal entries.

FIGURE 2 A schematic view of the adaptive radial grid

distribution for the regular, transition, and steep regions.
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NUMERICAL RESULTS AND DISCUSSIONS

In this section we present several numerical tests and com-

pare accuracies of our ASTFEM approach and the standard

FEM using fixed adaptive meshes (labeled ‘‘fam’’ below).

We do not include a comparison with Claverie’s method

based on fixed uniform grids. Such grids perform signifi-

cantly worse than ASTFEM which we demonstrated in Cao

and Demeler (2). We focus here on differences resulting from

sedimentation and diffusion error in the fam solution. In fam,

the radial grids are chosen to be frjgNG

j¼1; the same radial grids

as used for ASTFEM. Similar solutions using standard FEM

with refined grids near the cell bottom have also been used in

Stafford’s package Sedanal (5).

We evaluate the solution errors of ASTFEM and the fam

methods (both incorporate the same operator splitting

scheme) by comparing both solutions to a reference solution

cref(r, t) obtained by using the fixed grid method with a very

large number of grid points (N¼ 10,000) and small dt values

related to N according to Eq. 15.

Since the signal near the meniscus and bottom are rou-

tinely excluded from the fit, we consider here only data points

that are slightly inside the meniscus and the bottom of the cell

(rm ¼ m 1 0.05(b – m) and rb ¼ b – 0.05(b – m)). We then

calculate the L2 error (which is equivalent to the square-root-

mean error in the discrete case) of the approximate total

concentration c between rm and rb for the entire simulation

process according to

kc� crefkL
2¼

Z td

tb

Z rb

rm

jcðr; tÞ � crefðr; tÞj2dr dt

� �1=2

:

The values tb and td are the beginning and end time for the

simulation. For all examples, we choose td such that the

slowest component has essentially reached equilibrium.

For comparison, we consider four different sets of data

including monomer-dimer and monomer-trimer associations

of small and large molecular weights, and a range of koff rates.

All simulations use a meniscus position of m ¼ 5.8 cm and a

bottom position of b ¼ 7.2 cm. All simulations begin at rest

from rotor speed 0 accelerated to 60,000 rpm with an ac-

celeration rate of 400 rpm/s. To minimize the influence of the

solution error generated in the acceleration stage, we use a

fixed adaptive mesh method with twice as many grid points

as is used later for steady speed calculation. The mesh is

refined in the same way as for ASTFEM near the bottom, and

uniformly refined near the meniscus to produce a local mesh

density ;8 times higher than is used in the constant rotor

speed stage. In addition, the time-step size is set to be dt¼ 1 s

for the acceleration period. These treatments ensure not only

that solution errors reported below are virtually independent

of the errors from the acceleration period, but also that the

numerical calculation simulates velocity experiments more

realistically.

For all the examples it is found that 1), the mass conser-

vation is maintained throughout the entire simulation process

to the seventh decimal point; and 2), as indicated by the error

analysis of the scheme in Adaptive Grids for ASTFEM of

Multicomponent Systems, the solution errors of all numerical

solutions (with both ASTFEM and the fixed mesh method)

are approximately proportional to N�2, i.e., when N is dou-

bled, the error is reduced by a factor of 4. This shows that our

operator splitting scheme with ASTFEM is second-order

convergence in both the space and time variables.

Example 1

In our first example we illustrate the superior accuracy of

ASTFEM for solving a two-component noninteracting sys-

tem where the ratio of sedimentation speed for the two

components varies from 0.25 to 0.75. There are two reasons

for choosing this test:

1. Noninteracting systems are the limiting cases of interact-

ing systems when koff approaches zero. Thus conclusions

for noninteracting systems hold true for reacting systems

with small reaction rates.

2. Our scheme for Eq. 1 is built on the operator splitting

method, in which Stages 1 and 3 correspond to solving

noninteracting systems. We would like to make sure that

these two stages are solved accurately for all components.

The three two-component systems have the following

properties (throughout this text sedimentation coefficients are

reported in units of seconds (s) diffusion coefficients in units

of cm2/s, and koff rates in units of s�1):

FIGURE 3 Solution errors for a two-

component, noninteracting system compar-

ing ASTFEM and fam for varying ratios of

s1/s2. Simulation conditions are described in

the text in Example 1. Simulations are

repeated with N ¼ 100, N ¼ 200, and N ¼
400 radial data points. ASTFEM outper-

forms the fam solution for both components,

and is virtually independent of s.
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Case 1 : s1 ¼ 2:5 3 10
�13

D1 ¼ 6:0 3 10
�7

Case 2 : s1 ¼ 5:0 3 10
�13

D1 ¼ 4:0 3 10
�7

Case 3 : s1 ¼ 7:5 3 10
�13

D1 ¼ 3:0 3 10
�7

: (16)

For all cases, the second component is simulated with s2 ¼
1.0 3 10�12, D2 ¼ 2.0 3 10�7. These systems represent

molecules with frictional ratios ranging approximately be-

tween 1.6 and 2.1, and molecular weights ranging between

36 and 430 kDa (assuming a partial specific volume of 0.72

ccm/g). The initial partial concentration for both components

are set to be 0.5. Simulation times were from time tb ¼ 150 s

to td ¼ 17, 676 s.

The errors for each component obtained from ASTFEM

and fam are shown in Fig. 3. For the fast component C2, the

ASTFEM solution error is between 15 and 22 times smaller

than the fam solution error. For the slower component C1,

when s1/s2 ¼ 0.75, the ASTFEM solution is much more ac-

curate than the fam solution. For s1/s2 ¼ 0.25 and 0.5, both

solutions are of similar accuracy. This is understandable

since as we demonstrated in Cao and Demeler (2), the

adaptive ASTFEM is designed to eliminate the sedimentation

errors. It is particularly superior when the sedimentation

speed is large or the diffusion coefficient is small. For cases

with relatively slow sedimentation or large diffusion, the

performance of ASTFEM is similar to the fixed grid methods.

Nevertheless, for multicomponent reacting systems, the so-

lution error is determined by the errors in all components. A

large error in one component will degrade the accuracy of the

entire system. Therefore, for reacting systems, ASTFEM,

which is essentially free of sedimentation errors, will always

be better or be significantly better than fam. This point is

further underscored with the next three examples.

Example 2

In the second example, we evaluate the accuracy of a re-

versible monomer-dimer self-association system. In this

example, simulations were performed from time tb¼ 150 s to

td¼ 8, 587 s, and the sedimentation and diffusion coefficients

are given by

s1 ¼ 1:53358 3 10
�12 D1 ¼ 2:65728 3 10

�7

s2 ¼ 1:88260 3 10
�12

D2 ¼ 1:63100 3 10
�7

keq ¼ 1

: (17)

This is a typical case where ASTFEM significantly outper-

forms the classical fixed mesh methods. Fig. 4 displays the

typical solutions obtained with ASTFEM and fam method.

Similar to the improvement achieved by the moving hat

method and ASTFEM for a single-component Lamm equa-

tion (2,6), here ASTFEM captures very well the sedimenta-

tion boundaries for finite reacting systems. In contrast, the

fixed mesh method introduces significant discretization errors

in approximating the sedimentation terms. These errors are

responsible for the distortion of the solution boundaries and

the oscillation around the boundaries (see Fig. 4).

Fig. 5 compares the solution errors for ASTFEM and fam

for this example. In this case, the solution accuracy for

ASTFEM with only N ¼ 100 is still better than that of fam

with as many as N ¼ 400 radial points. In addition, it can be

seen that the advantage of ASTFEM is maintained for the

entire spectrum of the koff rates ranging from noninteracting

to instantaneous association.

Example 3

In this example, we evaluate the accuracy of our solution for

the case of a relatively small, globular protein undergoing a

FIGURE 4 Comparison of solution accuracy between ASTFEM (red

dots) and fam (blue stars) to a high-density reference solution with N ¼
10,000 (black line) for the system described in the text in Example 2. Shown

here is the solution for the case koff ¼ 10�4 at times t ¼ 732 s, 1023 s, and

1314 s. In addition to significant deviations in the boundary shape,

oscillations are apparent near the baseline for fam, while the ASTFEM

solution faithfully reproduces the high-density reference solution.

FIGURE 5 Comparison of ASTFEM and

fam solutions to a high-density reference

solution with N ¼ 10,000 for a monomer

dimer system with a relatively large molec-

ular weight (simulation conditions de-

scribed in the text in Example 2). The total

solution error for simulations with N ¼ 100,

N ¼ 200, and N ¼ 400 radial data points for

four different koff rates ranging from instan-

taneous reactions to almost noninteracting

are shown. In this case, ASTFEM offers

dramatic accuracy improvements over fam.
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monomer-dimer reaction, with monomer molecular weight

of 50 kDa and frictional ratio of 1.25. The monomer and

dimer solute parameters are given by

s1 ¼ 4:07830 3 10
�13 D1 ¼ 7:06770 3 10

�7

s2 ¼ 6:85880 3 10
�13

D2 ¼ 5:45000 3 10
�7

keq ¼ 1

: (18)

Simulations were performed at 60,000 rpm and scan times

between tb¼ 150 s and td¼ 18, 516 s were evaluated. In this

case, due to a relatively small sedimentation and relatively

large diffusion transport, the discretization error originating

from the diffusion term is more prominent than the error

originating from the sedimentation term. Even though a

consistent improvement in the solution is present for all

compared conditions, the reduction of the sedimentation

errors achieved by ASTFEM is not as striking as for cases

where molecular weights are larger. The results for a com-

parison between ASTFEM and fam against a high-density

reference solution with N ¼ 10,000 is shown in Fig. 6.

Example 4

In the last example, we test a reversible monomer-trimer

association system with the same monomer molecular weight

as shown in Example 3. The parameters for the system are

given by

s1 ¼ 4:07830 3 10
�13

D1 ¼ 7:06770 3 10
�7

s2 ¼ 9:29640 3 10
�13 D2 ¼ 4:68120 3 10

�7

keq ¼ 1

: (19)

The results are similar to the case of the monomer-dimer

association in Example 3, and the ASTFEM solution offers

accuracy improvements over fixed mesh methods. The im-

provements are larger than in the monomer-dimer case which

is due to the larger sedimentation speed of the trimer. The

results are presented in Fig. 7.

CONCLUSION

We have presented an ASTFEM solution of the Lamm

equation for the general case of interacting and noninteract-

ing solutes. Our approach can be used to model self- or

heteroassociating solutes for situations where the reaction is

either kinetically limited or where the reaction occurs in-

stantaneously on the timescale of the sedimentation experi-

ment. The ASTFEM solution is of second-order accuracy,

i.e., when the number of radial grid points is doubled, the

accuracy is increased by a factor of 4, and automatically

guarantees mass conservation. By comparing our adaptive

solution to the classical FEMs employed by others, we show

that an adaptive solution provides superior accuracy, espe-

cially for cases where the components are large and the

sedimentation speed is relatively high. Because of the use of

adaptive radial grids near the bottom of the cell, we can avoid

oscillations in the solution around the cell bottom that are

observed with FEMs based on uniform meshes without in-

troducing significant computational overhead. In addition,

our approach offers several targets for parallelization, im-

proving execution time without sacrificing accuracy of the

solution. By modulating the rate constants describing each

FIGURE 6 Comparison of ASTFEM and

fam solutions to a high-density reference

solution with N ¼ 10,000 for a small mo-

lecular weight monomer-dimer system (sim-

ulation conditions for Example 3 described

in text). The total solution error for simula-

tions with N ¼ 100, N ¼ 200, and N ¼ 400

radial data points for four different koff rates

ranging from instantaneous reactions to al-

most noninteracting for this system are

shown. For a small molecular weight system

ASTFEM offers moderate, but consistent

accuracy improvements over fam.

FIGURE 7 Comparison of ASTFEM and

fam solutions to a high-density reference

solution with N ¼ 10,000 for a monomer-

trimer system (simulation conditions are

described in text for Example 4). The total

solution error for simulations with N ¼ 100,

N ¼ 200, and N ¼ 400 radial data points for

four different koff rates ranging from instan-

taneous reactions to almost noninteracting

for this system are shown. For a small

molecular weight system ASTFEM offers

moderate, but consistent accuracy improve-

ments over fam.
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reaction, it is possible to model any system that falls between

the extremes of instantaneous reaction and independent,

noninteracting components. As a result, our work will con-

tribute to the analysis of interacting systems by providing

more efficient and accurate solutions to the transport equa-

tions, and hence allow the investigator to retrieve more reli-

able parameters when fitting experimental data. This will

expand the range of applicability of analytical ultracentrifuga-

tion beyond simple noninteracting systems, and open the way

to retrieving equilibrium constants and slow reaction kinetics

from velocity experiments in a robust fitting environment.

We should note that we have so far only presented a means

for accurately modeling a general multicomponent system of

arbitrary reactions, but have not proposed a way to solve the

inverse problem of fitting such complex models to experi-

mental data. Further work needs to be done to identify con-

ditions under which parameters can be reliably extracted

from experimental data. We expect that gradient-based op-

timization approaches will yield unsatisfactory convergence

properties due to irregular error surfaces, and that multidi-

mensional linearizations or stochastic optimization methods

proposed earlier (10,11,13) will need to be employed. This

will be the subject of future investigations. A graphical user

interface to the ASTFEM solution for the simulation of in-

teracting systems, including source code, is available as part

of the UltraScan software package (23).
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