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ABSTRACT Analytical ultracentrifugation experiments can be accurately modeled with the Lamm equation to obtain sedi-
mentation and diffusion coefficients of the solute. Existing finite element methods for such models can cause artifactual oscil-
lations in the solution close to the endpoints of the concentration gradient, or fail altogether, especially for cases where sv2/D is
large. Such failures can currently only be overcome by an increase in the density of the grid points throughout the solution at the
expense of increased computational costs. In this article, we present a robust, highly accurate and computationally efficient
solution of the Lamm equation based on an adaptive space-time finite element method (ASTFEM). Compared to the widely
used finite element method by Claverie and the moving hat method by Schuck, our ASTFEM method is not only more accurate
but also free from the oscillation around the cell bottom for any sv2/D without any increase in computational effort. This method
is especially superior for cases where large molecules are sedimented at faster rotor speeds, during which sedimentation
resolution is highest. We describe the derivation and grid generation for the ASTFEM method, and present a quantitative
comparison between this method and the existing solutions.

INTRODUCTION

In recent years, analytical ultracentrifugation has seen a re-

surgence as a method of choice for characterizing solution

behavior of biological macromolecules and macromolecular

assemblies. Sophisticated numerical analysis coupled with

modern digital data acquisition technology offers a wealth of

macromolecular information from this technique. The sedi-

mentation process of a solute in an analytical ultracentrifu-

gation cell is described by the Lamm equation (1),
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where C(r, t) is the concentration, s and D are the sedimen-

tation and diffusion coefficients, and v is the angular veloc-

ity. The terms m and b are the radii of the meniscus and

bottom of the cell.

Using a nonlinear least-squares fitting algorithm, data

from sedimentation velocity and approach-to-equilibrium

experiments can be fitted to finite element solutions of the

Lamm equation, and sedimentation and diffusion coefficients,

partial concentrations, and to some degree, even equilibrium

constants, can be obtained at high resolution. A number of

approaches for solving the inverse problem of fitting moving

boundary data to finite element solutions of the Lamm

equation have been developed and implemented in software

packages. Direct fitting of boundary data to fixed-mesh finite

element solutions was originally proposed by Claverie et al.

(2) and Todd and Haschemeyer (3). In the fixed-mesh

approach, radial mesh points are uniformly distributed

between the meniscus and the bottom of the cell. Software

based on this solution was later developed by Demeler and

Saber (4) and Schuck et al. (5). The approach of Stafford and

Sherwood (6) fits time-difference data from experimental

scans to time-difference data simulated with a fixed-mesh

finite element solution. However, the fixed-mesh finite ele-

ment method suffers from an artifactual broadening of the

sedimenting boundary (so-called numerical diffusion). When

such solutions are used to fit experimental data, the fitted

diffusion coefficients tend to be smaller than the actual dif-

fusion coefficients, especially when the concentration gra-

dient is steep. Later, Schuck introduced an improved finite

element solution, the so-called moving hat method (7). This

method uses a moving frame of reference and discretizes the

Lamm equation under the moving frame by using the

standard finite element method. A similar idea relying on

distorted grids in finite difference solutions of the Lamm

equation has been applied in the earlier developments of

sedimentation simulation techniques; see Cox and Dale (8)

and references therein. The moving grid employed in the

moving hat method is spaced exponentially in the radial

direction and shifted at the speed of sedimentation. The mov-

ing hat method improves the accuracy of the numerical

solution substantially compared to the fixed-mesh approach

by Claverie. However, there are two issues not well addressed

by the moving hat method. First, even though the gridpoints

at the meniscus and at the bottom of the cell have to stay

fixed, the moving reference frame used in the moving hat

method would require these points to move like all other

points in the grid. Therefore, the finite element discretization

cannot be applied at the meniscus and at the bottom in the

moving hat method. Schuck addressed this singularity by

manually adjusting the values of the solution at the bottom
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and at the point next to the meniscus. Such post-processing is

not based on the differential equation itself and may result in

loss of accuracy. The second problem with the moving hat

method is related to the fact that the grid spacing increases

exponentially from the meniscus to the bottom, resulting in

low radial mesh point density at the bottom of the cell where

concentration changes can be very large, thus lacking the

required resolution. It has been pointed out (4,7) that a lack

of sufficient radial resolution at the bottom of the solution

column results in oscillations in the finite element solution,

especially for experimental conditions where sv2/D is large.

Such conditions are encountered when large molecules such

as DNAmolecules.1 kb, multi-enzyme complexes, and large

assemblies like chromatin or virus particles are sedimented at

moderately high rotor speed. Indeed, if the number of radial

mesh points is not large enough, both the Claverie approach

and the moving hat method will fail altogether.

Here we present an entirely new finite element method,

termed the adaptive space-time finite element method

(ASTFEM), for the numerical solution of the Lamm equation

that incorporates the advantages introduced by the moving

reference frame, and properly addresses the remaining issues

in the moving hat method. In this method the Lamm equation

is simultaneously discretized in the radial and the time domain

(hence the name of space-time finite element method). This

space-time discretization avoids the difficulty caused by the

singularity of the moving grid at the meniscus and at the

bottom in the moving hat method. To eliminate the oscil-

lations around the cell bottom, we implement an adaptive

grid locally in a very narrow region next to the cell bottom.

The length of this narrow region is proportional to D/(sv2).

The number of the grid points placed in the narrow region

is ln(sv2/D), which increases very slowly with respect to

sv2/D. This fine grid distribution around the cell bot-

tom effectively eliminates the oscillation of the numerical

solution. To minimize the numerical diffusion, we use the

same moving mesh idea as in Schuck’s moving hat method

in the region away from the bottom. The length of this region

typically ranges between 90 and 99% of the cell length (see

below). As a result, the ASTFEM enjoys the same accuracy

with respect to numerical diffusion as the moving hat

method, but avoids the inaccuracies due to the singularities at

the meniscus and bottom of the cell, and completely elimi-

nates oscillations at the bottom of the cell. At the same time

the computational costs for all three methods are essentially

the same: At each time-step one needs to solve a triangular

linear algebraic system of equations with a fixed coefficient

matrix. Another important feature of the ASTFEM approach

is that the mass conservation of the Lamm equation is

guaranteed automatically without the need for any post-

processing. Overall, we conclude that the ASTFEM method

proposed in this article is an accurate, efficient and robust

method for the Lamm equation for sedimentation experi-

ments. Furthermore, the concept of the space-time finite

element discretization on adaptive moving grids can be

extended to multiple interacting and self-association systems

or models with concentration dependent sedimentation and

diffusion coefficients.

THE ADAPTIVE SPACE-TIME FINITE ELEMENT
SOLUTION OF THE LAMM EQUATION

Let dt represent the size of the time-step, and let tn ¼ n dt be
the nth time-step. We multiply both sides of the Lamm equa-

tion by an arbitrary function v(r, t) and integrate the result

over the space-time slab: [m, b] 3 [tn, tn11]. It follows from
integration by partsZ tn11

tn

Z b

m
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This is called the weak form of the Lamm equation. Any

solution to the Lamm equation must satisfy Eq. 2, and any

smooth function C(r, t) satisfying Eq. 2 must also be a solu-

tion of the Lamm equation. We will derive the finite element

solution based on this weak formulation.

To define an approximate solution to Eq. 2, we first divide

the space-time slab [m, b]3 [tn, tn11] into a number of space-

time elements. Each element is either a triangle or a quad-

rilateral. Let N be the total number of points used in the

r-direction, and suppose the grid points rj, 1 # j # N are

already given (see next section for the distribution of the grid

points). We connect (rj, tn) to (rj11, tn11) for all j ¼ 1, . . . ,
N – 1. Then the slab [m, b] 3 [tn, tn11] is divided into N – 1

quadrilaterals and two triangles (one at each end). For each j,
let cnj and c

n11
j be the approximate values of C(r, t) at the grid

points (rj, tn) and (rj, tn11), respectively. We define a

continuous function c(r, t) to approximate the exact solution

C(r, t) as follows.
Consider a quadrilateral element Kn

j with vertices (rj, tn),
(rj11, tn), (rj12, tn11), (rj11, tn11). Let K̂ ¼ ½0; 1�3½0; 1� be the
standard element in an auxiliary jh-coordinate system.

Define the mapping Fn
j : K̂/Kn

j as

(see Fig. 1). This mapping will be used to introduce the finite

element solutions for all r and t on Kn
j : Now, given four

values cnj ; c
n
j11; c

n11
j11 ; and cn11j12 ; we define a bilinear function

ĉðj;hÞ on the standard element K̂ as

r ¼ rjð1� jÞð1� hÞ1 rj11jð1� hÞ1 rj11ð1� jÞh1 rj12jh
t ¼ tn 1 dt h:

�
(3)
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ĉðj;hÞ ¼ c
n

j ð1� jÞð1� hÞ1 c
n

j11jð1� hÞ1 c
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j12 jh

1 c
n11

j11 ð1� jÞh: (4)

It follows that ĉ takes the values cnj ; c
n
j11; c

n11
j12 ; c

n11
j11 at the

four vertices of K̂ , respectively. The approximate function

c(r, t) on element Kn
j is defined as the ‘‘pull-back’’ of ĉðj;hÞ

under the inverse mapping of Fn
j : More precisely, let

j

h

� �
¼ G

n

j

r
t

� �� �
¼

r � rj � ðrj11 � rjÞh
ðrj11 � rjÞ1 ðrj12 � 2rj11 1 rjÞh
ðt � tnÞ=dt

" #

be the inverse mapping of Fn
j : Then we define for (r, t) in K

n
j ;

cðr; tÞ ¼ ĉðj;hÞ ¼ ĉ G
n

j

r
t

� �� �� �
;

and c(r, t) takes the values cnj ; c
n
j11; c

n11
j12 ; c

n11
j11 at the vertices

(rj, tn), (rj11, tn), (rj12, tn11), and (rj11, tn11), respectively.
To define c(r, t) on the triangular element Kn

0 with vertices

(r1, tn), (r2, tn11), and (r1, tn11), we use the standard triangular
element T̂ ¼ fðj;hÞ; 0# j# 1; 0#h# 1� jg (see Fig. 2).
The mapping Fn

0 from K̂ to Kn
0 is

r ¼ r1ð1� j � hÞ1 r2j1 r1h
t ¼ tn 1 dt h

:

�
(5)

Define a linear function ĉðj;hÞ on T̂ as

ĉðj;hÞ ¼ c
n

1ð1� j � hÞ1 c
n11

2 j1 c
n11

1 h;

and define the approximate function c(r, t) on Kn
0 as the

‘‘pull-back’’ of the above under the inverse mapping of Fn
0:

Similarly, on the triangular element Kn
N at the right end of

the space-time slab, we can introduce the mapping Fn
N from

T̂ to Kn
N and define the approximate function c(r, t) by the

values cnN�1; c
n
N; and cn11N :

Note that the above piecewise-defined function c(r, t) is
continuous on the space-time slab [m, b]3 [tn, tn11]. It takes
the values cnj and cn11j at the vertices (rj, tn) and (rj, tn11),
respectively, for all j ¼ 1, 2,. . .,N. Once these values are

given, the approximate function c(r, t) is uniquely defined.

Next we introduce a series of test functions vj(r, t) used in

Eq. 2. For each j with 2# j# N – 1, we define the values of

vj on the grid points as

vj ¼
1; at ðrj�1; tnÞ and ðrj; tn11Þ
0; at all other grid points:

�

Then vj(r, t) is defined piecewise with the above values in the
same way as above for c(r, t).
For j ¼ 1 and j ¼ N, we require

v1 ¼
1; at ðr1; tn11Þ
0; at all other grid points;

�

and

vN ¼ 1; at ðrN�1; tnÞ; ðrN; tnÞ; and ðrN; tn11Þ
0; at all other grid points:

�

It is noted that v1 is non-zero only in Kn
0 : For j ¼ 2, 3, . . ., N,

each vj is only non-zero in the two elements Kn
j�1 and Kn

j :

Integrals

Given the values of an initial concentration distribution

cnj ; 1# j#N for the approximate solution c(r, t) at time tn, we
now derive a system of linear algebraic equations for the

unknown values cn11j ; 1# j#N at the next time-step tn11.
We ask for the weak form (Eq. 2) to hold for all test functions

vj defined in the last subsection, namely, that the approximate

function c(r, t) satisfiesZ tn11

tn

Z b

m

r
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drdt ¼ 0;

j ¼ 1; 2; . . . ;N: (6)

Since for each j the test function vj is non-zero only in Kn
j�1

and Kn
j (v1 is non-zero only in K

n
1), the above equation can be

reduced toZZ
K
n
j

1

ZZ
K
n
j�1

 !
r
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@vj
@r

� sv
2
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2
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@vj
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drdt¼ 0:

(7)

To evaluate the integrals over Kn
j ; we change the variables

from (r, t) to (j, h) by the mapping from Eq. 3 so that the

integrals will be over the standard element K̂: The Jacobian
J of the coordinate transform is

FIGURE 1 Mapping Eq. 3 transforms the standard quadrilateral element

K̂ into a quadrilateral element Kn
j : The finite element solution on Kn

j is

defined by transforming a bilinear function on K̂ with mapping Fn
j :

FIGURE 2 Mapping Eq. 5 transforms the standard triangular element K̂
into the triangular element Kn

0 : The finite element solution on Kn
0 is defined

by transforming a linear function on K̂ with mapping Fn
0:
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where by Eq. 3,
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By the fact that the Jacobian @ðj;hÞ=@ðr; tÞ for the inverse

transform is equal to the inverse matrix of J, we have
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and by Eq. 4 that
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@ĉ

@h
¼ c

n11

j � c
n

j

� �
ð1� jÞ1 c

n11

j11 � c
n

j11

� �
j: (11)

In addition, note that onKn
j ; that vj¼ 1 – j. Therefore byputting

Eq. 12 into the first term of Eq. 7 we can reduce the integral in

where
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For the second integral in Eq. 7, we note the fact that
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The above formulas cover all the integrals in Eq. 7 over Kn
j :

We can deal with the other integrals in Eq. 7 over element

Kn
j�1 similarly. For the two triangular elements Kn

0 andK
n
N at

the end of the space-time slab, we need to use the mapping

Fn
0 andF

n
N defined in Eq. 5 to change the integrals into those

over the standard triangle T̂: We skip the details of the

formulas, since they can be worked out in the same way as

for the quadrilateral elements.

By putting all these integrals into Eq. 6, we obtain a system

of linear algebraic equations

M1C
n11 ¼M0C

n
; (12)
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@j

@r

@h
1

@ĉ
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where Cn ¼ cn1; c
n
2; . . . ; c

n
N

	 
T
is the vector of the known

approximate values of C at time tn, and Cn11 ¼ cn111 ;
	

cn112 ; . . . ; cn11N �T is the vector of the unknown approximate

values of C at time tn11. M1 and M0 are the coefficient

matrices assembled from the above integral formulas. Note

that both of these two matrices are independent of the time-

level n. Therefore, they need to be calculated only once for

the entire simulation process. Also, since bothM1 andM0 are

tridiagonal, the system of equations in Eq. 14 can be easily

solved. If we use the Gaussian elimination method to solve

Eq. 14, then the total number of arithmetic operations needed

is only 13N for each time-step. If we perform the LU-
decomposition on M1 (which costs only 5N operations) and

store it in memory, then we only need 11N operations at each

time-step.

Another important feature of the above ASTFEM scheme

is that the mass conservation for the Lamm equation is

guaranteed automatically without any post-processing. If we

sum up the expressions in Eq. 6 for all j ¼ 1, 2, . . ., N, and
notice that

+
N

j¼1

ðvjr; tÞ[1; on½m;b�3 ½tn; tn11�;

we have Z tn11

tn

Z b

m

r
@c

@t
drdt¼ 0;

which implies the conservation of massZ b

m

rcðr; tn11Þdr¼
Z b

m

rcðr; tnÞdr:

ADAPTIVE GRIDS

In this section we discuss the selection of an ideal

distribution of grid points used for the ASTFEM approach

described in the last section. First, we recall the behavior of

the concentration function C(r, t) in a typical velocity

experiment. A notable feature is the rapid buildup of the

concentration at the bottom of the cell. This sharp increase

can cause numerical oscillations if insufficient radial grid

points are used to describe the transition. It is well known

that all existing numerical solutions for the Lamm equation,

including Claverie’s classical finite element method and

Schuck’s moving hat method, exhibit oscillations at the

bottom of the cell if the step size is not small enough. This

oscillation happens especially when the sedimentation speed

s or angular velocity v is large or the diffusion coefficient D
is small. The oscillations can propagate back toward the

meniscus and even cause a complete failure of the com-

putation. Although an increase of the number of grid points

will correct this problem, this will also increase the computa-

tional cost. Furthermore, a rule to determine an appropriate

grid spacing for the fixed-mesh or moving hat method does

not exist, and the user is forced to experiment to avoid such

oscillations.

Our first aim in the application of adaptive grids is to

increase the resolution locally around the cell bottom. The

second goal for adaptive grids is to minimize the numerical

diffusion typically accompanied with a discretization of

sedimentation-diffusion equations. This is essential since

numerical diffusion may smooth out the steep boundary of C
and predict a larger diffusion coefficient or smaller molecular

weight. It is well known in the numerical analysis com-

munity (and as observed by Schuck; see (7)) that the

numerical diffusion introduced can be greatly reduced by

aligning the space-time element with the sedimentation

speed (9). Under the moving frame, the Lamm equation is

essentially free of numerical diffusion.

Based on this observation, we will define a grid that aligns

with the sedimentation speed in most regions of the cell

similar to the implementation in the moving hat method. At

the same time, we will maintain a very small step size in the

narrow region around the bottom. To this end, we divide the

interval [m, b] into three different regions: a regular region,

a steep region, and a transition region between the steep and

regular regions. The grid in the regular region is generated

comparable to the grid in the moving hat method. The steep

region at the bottom of the cell consists of closely spaced

grid elements (the exact spacing is explained below), and the

transition region between the two consists of elements whose

grid spacing changes gradually from one end to the other to

produce a smooth transition of the overall grid spacing.

First we determine the width of the steep region by using

the equilibrium condition of the Lamm equation, which is

given by

CðrÞ ¼ b
2�m

2

2

ne
nðr2�b

2Þ=2

1� e
nðm2�b

2Þ=2
;

where

n¼ sv
2

D
:

We set a threshold C* of C to indicate the beginning of the

steep region. That means we consider [r*, b] as the steep

region with r* satisfying C(r*) ¼ C*. It can be seen that

r� � b� 1

nb
ln ½nðb2�m

2Þ=ð2C�Þ�:

The reason we choose the equilibrium condition to determine

the width of the steep region is that the concentration C(r, t)
builds up gradually at the bottom, with the steep region ex-

panding over time. Thus using the equilibrium condition

(which corresponds to infinite long time) will include all

regions exhibiting a steep concentration change during the

entire simulation process.

In our numerical tests we chose C* ¼ 1/N to slightly

increase the steep region for larger N. However, this is not

Adaptive Space-Time Finite Element Method 1593

Biophysical Journal 89(3) 1589–1602



a critical choice. Since C(r, t) is an exponential function of r
around the bottom, different C* values have only a minor

effect on the position of r*, and any other fixed value of C*

will also work well.

Next, we consider the requirement to eliminate the

oscillations in the steep region. To avoid oscillations, the

grid size dx must be sufficiently small compared to the value

of D/(sv2). It is well known that for the discretization of

sedimentation-diffusion problems the step size dx should

be chosen such that the local Paclet number—which is

proportional to the sedimentation speed and the grid size,

and inversely proportional to the diffusion coefficient—is

smaller than 1 (see Morton (10)). In our case, this

condition implies that

dx,h� ¼
2D

sv
2
b
¼ 2

nb
: (13)

We may simply choose a uniformly distributed grid satis-

fying Eq. 15 for the steep region. However, noticing that the

solution C is exponential as r approaches the bottom b, it is
preferable to select a grid that becomes finer and finer as r/
b. To this end, we use a simple sine function to determine the

grid position in the steep region. We let

Ns ¼
$
p

2
ðb� r�Þ=h�

%
11¼

$
p

4
lnðnðb2�m

2ÞN=2Þ
%
11

be the total number of grid points in the steep region, where

b�c represents the integer part of the number in between. We

define the grid points in region [r*, b] as

yj ¼ r� 1 ðb� r�Þsin
ð j � 1Þp
2ðNs � 1Þ

� �
; j ¼ 1; 2; . . . ;Ns:

It follows that the grid size is given by

yj11 � yj � ðb� r�Þ
p

2ðNs � 1Þ cos
jp

2ðNs � 1Þ

� �

� h�cos
jp

2ðNs � 1Þ

� �
; j ¼ 1; 2; . . . ;Ns � 1:

Therefore, the step size decreases gradually as j increases.
The leftmost interval is approximately of size h*, whereas the
rightmost interval is approximately of size ðp=2NsÞh�;
which is one order of Ns smaller than h*.
Next we determine the grid in the regular region. We

consider (m, r�) as the regular region with

r+ ¼ r� �
b

Ns � 1
ln

b

m

� �
:

The reason to choose r� as the right end of the regular region
is to make the grid size around the right end of the regular

region match the grid size around the left-hand side of the

transition region. When n is large, r� is close to b and most of

the cell is regular (see Table 1). The grid points in the regular

region are determined analogous to the moving hat method,

namely,

xj ¼ mðb=mÞðj�3=2Þ=ðN�1Þ
; j ¼ 2; 3; . . . ;Nr;

where

Nr ¼ bðN � 1Þlogb=m

r+
m

� �
1

3

2
c:

Finally, we determine the grid points in the transition

region between r� and r*. Let

Nt ¼ blog2
r� � r+
h�

� �
c1 1:

There are Nt grid points in the transition region,

tj ¼ r� � ð2j � 1Þh�; j ¼ 1; 2; . . . ;Nt:

Note that the step size in the transition region halves from left

to right. The length of the rightmost interval in the transition

region is h*, and the length of the leftmost interval in this

region is 2Nt�1h�; which is approximately the length of the

rightmost interval in the regular region.

Since the grid point xNr
at the right boundary of the regular

region may not match the point tNt
at the left boundary in the

transition region due to integer rounding in calculating Nt,

we need to adjust tNt�1 such that it is positioned halfway in

between its two neighboring grid points.

The grid over the entire cell is composed of all the points

yj, tj, and xj determined in the above manner. The total

number of points actually used is Ns1 Nt1 Nr. This number

is typically a small fraction of N; see Table 1 for the values of
Ns, Nt, and Nr for two examples—one with a moderate and

one with a very large sv2/D value.

A typical grid defined by the above method is shown in

Fig. 3. The nice feature of this mesh is that for most of the

region the grid distribution follows the moving frame of

TABLE 1 The number of grid points used for the ASTFEM for the simulation of a typical cell with m ¼ 5.8, b ¼ 7.2, and different

s, w, and D

Ns Nt Nr Total r� r*

S ¼ 1.562e � 12 N ¼ 101 11 5 99 115 7.169337 7.194758

v ¼ 50,000 rpm N ¼ 201 11 4 199 214 7.181502 7.194472

D ¼ 1.279e � 7 N ¼ 1001 13 2 995 1010 7.191381 7.193806

s ¼ 1.0e � 11 N ¼ 101 16 15 99 130 7.176244 7.199993

v ¼ 60,000 rpm N ¼ 201 17 14 200 231 7.188469 7.199993

D ¼ 1.0e � 9 N ¼ 1001 18 12 999 1029 7.197067 7.199992
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reference, which is desirable for maintaining the right

sedimentation speed and minimizing the numerical diffusion

introduced by discretization. The grids near the cell bottom

have a very small step size, which is important to suppress

the oscillation and to describe the detailed structure near the

bottom of the cell.

Remark

By Taylor’s expansion of C(r, t) it is apparent that the

discretization error is bigger in regions where the concen-

tration gradient is steep, and the error is small where the

solution is relatively flat. To obtain a small overall approxi-

mation error, the grid size should be small in regions with

large solution curvature, but can be large elsewhere. For

a typical concentration function C(r, t) large curvatures do

not only exist near the bottom of the cell, but can also exist

around the moving boundary. Therefore, an ideal grid

distribution should also have higher grid density around the

boundary. However, since the solution boundary is moving,

this requires adjustment of the grid distribution throughout

the simulation, and the coefficient matrices in the linear

algebraic system in Eq. 12 need to be recalculated. This will

offset the computational savings offered by the adaptive

methods. Therefore, we do not consider this option here.

However, if the Lamm equation under consideration con-

tains variable sedimentation or diffusion coefficients, then

the coefficient matrices require updating at every time-step

regardless. In this case, adding the mesh adaptivity through-

out the cell does not introduce additional computational

work (compared to fixed-mesh methods), and the solution

accuracy can be greatly improved.

NUMERICAL RESULTS AND COMPARISON

We compared the accuracy and efficiency of three different

finite element approaches for solving the Lamm equation.

The first method is the traditional finite element method

based on the uniform fixed mesh described by Claverie (2).

The second method is the moving hat finite element method

developed by Schuck (7). The third approach is the

ASTFEM proposed in this work. All three methods essen-

tially utilize the Crank-Nicholson time discretization approach

(11). We also examined the effect of the discretization step

sizes for space and time and provide some guidelines for

choosing the number of grid points for a simulation.

Claverie’s finite element method

We first evaluated the finite element method based on

a uniform fixed mesh as described by Claverie (2). The time-

step sizes are chosen according to the formula given by

Schuck (7),

dt ¼ lnðb=mÞ=v2sðN � 1Þ: (14)

Our simulation example used the following parameters:

Example 1

m ¼ 6:5; b ¼ 7:2; s ¼ 10
�12

; D ¼ 23 10
�7
; 60; 000 rpm:

(15)

This model approximates a 0.4-kilobase DNA molecule

sedimenting through a 7-mm solution column in 1 h. All our

simulations were initialized with unity concentration across

the entire solution column. We tested four grid densities,

N ¼ 101 (dt ¼ 25.90s), 201 (dt ¼ 12.95s), 401 (dt ¼ 6.48s),
and 1001 (dt ¼ 2.59s). In Figs. 4–6 we show the numerical

solution c(r, t) in different regions and with various N
and dt. From these graphs it can be seen that:

1. In the region near the bottom of the cell the oscillation of

the numerical solution c(x, t) depends mainly on dx ¼
(b – m)/(N – 1), and not on dt (see Fig. 4).

2. In the region near the meniscus, the oscillation occurs

only at the beginning of the simulation. The magnitude of

the oscillation depends mainly on the time-step size dt
(see Fig. 5). Also, if rotor acceleration is taken into account,

the oscillation near the meniscus can be markedly reduced.

3. In the center of the cell, the accuracy of the solution is

determined by both N and dt (see Fig. 6).

FIGURE 3 ASTFEM grid point dis-

tribution for four successive time-steps.

A shows the distribution for the entire

cell, and in B a zoom of the region

near the bottom is shown, clearly

identifying the increased density of

gridpoints at the bottom of the cell

where the change of concentration is

the largest and the highest resolution is

needed.
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These observations clearly indicate that, to obtain a highly

accurate numerical solution, dx must be very small near the

bottom of the cell, and N and dt must be adjusted simul-

taneously. This is our motivation for the design of the adap-

tive grids.

Schuck’s moving hat method

Next, we evaluate the performance of Schuck’s moving hat

method. The grid for time level tn used in the moving hat

method is given by

x1 ¼ m; xN ¼ b;

xj ¼ mðb=mÞðj�3=2Þ=ðN�1Þ
; j ¼ 2; 3; . . . ;N � 1: (16)

The same grid is used for the next time-step tn11, but the
entire grid is shifted right by one point, with the last point

deleted. See Fig. 7 for a typical grid used in the moving hat

method. The basic idea in the moving hat method is first to

introduce a time-dependent coordinate transform r9¼ r9(r, t)
and change the Lamm equation into a differential equation in

(r9, t)-variables, and then to discretize this equation with the

standard finite element method. The exponential grid

distribution from Eq. 16 sets the grid-speed equal to that of

the sedimentation speed. In this case, the Lamm equation is

free of sedimentation under the moving coordinate system.

There are two issues not well addressed by the moving hat

method:

1. The step size dx determined by Eq. 16 is too large around

the cell bottom (even larger than in the rest of the cell),

although a smaller step size is actually necessary for this

region to accurately resolve the exponential buildup of

the concentration. Therefore, the numerical solution by

the moving hat method exhibits oscillations around the

cell bottom if N is not sufficiently large (see Figs. 8 and

9, A, C, and E).
2. The coordinate transform used in the moving hat method is

singular at the meniscus and at the bottom. This is because

at these points the grid is required to move according to the

sedimentation velocity, even though these positions are

fixed and have to remain at the meniscus and at the bottom.

Therefore, the finite element discretization cannot be

applied to the two points at the meniscus and the bottom.

Schuck dealt with this problem by imposing two addi-

tional conditions:

FIGURE 4 Concentrations c(r, t)

around the cell bottom obtained by

Claverie’s finite element method using

(A) different numbers of grid points but

the same time-step size, and (B) differ-

ent time-step sizes but the same number

of grid points. The parameters for this

experiment are from Example 1, and

t ¼ 4922 s. From this figure it can be

seen that the occurrence of oscillations

at the bottom of the cell is strongly de-

pendent on radial grid spacing, whereas

a change of the time spacing has little

influence.

FIGURE 5 Concentrations c(r, t)
around the meniscus obtained by Clav-

erie’s finite element method using (A)

different numbers of grid points but the

same time-step size, and (B) different

time-step sizes but the same number of

grid points. The parameters for this

experiment are from Example 1, and

t ¼ 25.9, 77.7, and 129.5 s. Here, the

result is opposite to the effect shown in

Fig. 4, and the oscillations near the me-

niscus are mostly influenced by the time

discretization and only exist for the first

several time-steps. Further reduction in

the oscillation can be achieved by taking

into account the rotor acceleration

period at the beginning of the run.
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1. The value cn112 is the weighted average of cn111 and cn113 :
2. The value cn11N is determined by requiring that the total

mass at tn11 is equal to that at tn.

Although these two conditions are consistent with the

continuous equation, they are not based directly on the finite

element discretization, i.e., they are a type of post-

processing, whose effect is not determined by the properties

of the Lamm equation. Nevertheless, the moving hat method

is much more accurate than the fixed grid finite element

method, even though it does not fix the oscillation problems

near the bottom of the cell associated with the standard

method by Claverie.

Comparison of ASTFEM with the moving
hat method

Next, we evaluated the performance of the ASTFEMmethod

based on the adaptive grid solution described earlier, and

compared it to the moving hat method. Since the moving hat

method is much more accurate than the standard finite

element method by Claverie et al. (2), we do not present the

comparison with the fixed-mesh method.

To illustrate the difference between the two methods we

chose the following experimental conditions corresponding

to a 1-kilobase DNA molecule in random coil conformation

sedimenting in a 1.4-cm column over 1.5 h:

Example 2

m ¼ 5:8; b ¼ 7:2; s ¼ 1:5623 10
�12

;

D ¼ 1:2793 10
�7
; 50; 000 rpm: (17)

In this case, the time-step was calculated according to Eq. 16

to be dt ¼ 50.49 for N ¼ 101 points. In Figs. 8 and 9 we plot

the numerical solution obtained from the moving hat method

and the ASTFEMmethod with various N and dt. We observe

from these figures that:

1. For the moving hat method, if N is sufficiently large (e.g.,

N $ 400 for Example 1, above), the oscillation around

the bottom can be eliminated, and the solution is quite

accurate. When N is moderate, the oscillation occurs

around the bottom, and it does not propagate back into

the cell by much. But the buildup of the concentration at

the cell bottom has been considerably broadened (Figs. 8

C and 9 C), and the accuracy in the bottom region is very

poor. When N is small, e.g., N ¼ 100 for Example 2, the

oscillation can travel back rapidly toward the meniscus of

the cell and destroy the solution profile completely.

2. For the ASTFEM method, the solutions are not only very

well resolved around the bottom, but also maintain a high

accuracy around the boundary at all times. Most impor-

tantly, they are free from oscillation around the cell bot-

tom for both examples with N ¼ 100. We even tested

some unrealistic cases with D ¼ 10�14 and N ¼ 100 and

found no oscillation at the cell bottom, and the solution

remains highly accurate. Thus, unlike the moving

hat method, the ASTFEM solution with the adaptive

grids proposed in this article never breaks down and is

FIGURE 6 Concentrations c(r, t)

boundaries around the middle of the

cell obtained by Claverie’s finite

element method using (A) different

numbers of grid points but the same

time-step size, and (B) different time-

step sizes but the same number of grid

points. The parameters for this experi-

ment are from Example 1, and t¼ 518.0

s. In the middle of the cell the solution

accuracy is affected by both the time and

radial step size.

FIGURE 7 A typical grid used in the moving hat method for four

successive time-steps. The radial distribution of the grid points is determined

according to Eq. 16. The grid point density decreases toward the bottom of

the cell, with the largest spacing at the bottom of the cell, where the highest

resolution is actually needed.
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extremely robust. The issue of conservation of mass is

also handled remarkably well by ASTFEM. Even for

a small number of grid points the method maintains the

total mass within no less than seven-decimal-digits accuracy

without any post-processing during the entire simulation.

To compare the two methods quantitatively, we choose as

the reference solution a numerical solution obtained us-

ing Claverie’s fixed-mesh finite element method with

a very large number of radial grid points and a very small

dt (N ¼ 104 and dt ¼ 0.259 for Example 1, and N ¼ 104 and

dt ¼ 5.049 for Example 2). Then we measure the difference

between the moving hat or ASTFEM solutions and the

reference solution. Since in all experimental data analysis the

data near the meniscus and near the bottom of the cell are

excluded from the fit, we consider here only data points from

the solution column that are slightly inside the meniscus and

the bottom of the cell, and calculate only the errors between

two internal points ra and rb in the cell. We choose ra ¼ m1

0.05(b � m) and rb ¼ b – 0.05(b� m), which means that 5%

of the solution column next to the meniscus and the bottom

are excluded from the accuracy check. For the comparison,

we calculate for each time-step t the maximum error

FIGURE 8 Concentrations obtained

by the moving hat method (A, C, and E)

and the ASTFEMmethod (B, D, and F)

with various N and dt for Example 1

(m ¼ 6.5 cm, b ¼ 7.2 cm, s ¼ 10�12,

D ¼ 2 3 10�7, 60,000 rpm, 9000 s).

(A and B) The concentrations near the

meniscus. (C and D) The concentra-

tions near the bottom of the cell. (E and

F) The concentrations on the entire cell.

The largest difference can be noticed at

the bottom of the cell (C and D), where
the moving hat method is poorly

conditioned. The oscillations near the

meniscus are reduced for the ASTFEM

method (A and B), and can be signifi-

cantly reduced for both solutions when

slow rotor acceleration is modeled in

the solution.

1598 Cao and Demeler

Biophysical Journal 89(3) 1589–1602



k cðtÞ � crefðtÞ kN¼ max
ra#r#rb

jcðr; tÞ � crefðr; tÞj

and the L2 error (which is equivalent to the square-root-mean

error in the discrete case)

k cðtÞ� crefðtÞ kL
2¼ 1

rb� ra

Z rb

ra

jcðr; tÞ� crefðr; tÞj2 dr
� �1=2

:

We plot in Fig. 10 the errors versus time t for different

numerical methods. From these results we observe that both

ASTFEM and the moving hat method (when it is

convergent) exhibit second-order convergence properties

(12), i.e., if the step size dx and dt are reduced by a factor of

2, the error is reduced by a factor of 4. With about the same

number of grid points, ASTFEM is always more accurate

than the moving hat method. In particular, when D is small,

the moving hat method fails altogether, but ASTFEM

remains quite accurate. If we include the entire cell from

meniscus to bottom for the error comparison, then ASTFEM

is much more accurate than the moving hat method, since

the latter cannot resolve the solution sufficiently at the

bottom.

FIGURE 9 Concentrations obtained

by the moving hat method (A, C, and

E) and the ASTFEMmethod (B, D, and

F) with various N and dt for Example 2

(m ¼ 5.8 cm, b ¼ 7.2 cm, s ¼ 1.562 3

10�12, D ¼ 1.2793 10�7, 50,000 rpm,

6000 s). (A and B) The concentrations

near the meniscus. (C and D) The

concentrations near the bottom of the

cell. (E and F) The concentrations on

the entire cell.
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Guideline for choosing N

A practical question in the numerical solution of the Lamm

equation is how many grid points one should use to get

a sufficiently accurate approximate solution. A satisfactory

answer to this question clearly depends on the following

factors: the measure of what constitutes an acceptable error,

the portion of the solution column to be included for the

finite element fit of the experimental data, and the parameters

for the Lamm equation. For our error comparison we con-

sider here the L2-norm, and include only 90% of the solution

column in middle for the accuracy check, and report on the

dependence of the accuracy on N, s, D, and v.

First, it is clear that the effects of s and v are not in-

dependent of each other. It is the product of sv2 which

determines the behavior of the solution of the Lamm

equation. Therefore, we fix the rotor speed at 50,000 rpm,

and examine the effects of various values of s.
Here we consider two scenarios, the first is for a fixed D

and a varied s, and the second is for a fixed s and a varied D.
In Fig. 11 we plot the L2 error versus time for various

sedimentation coefficients. Note that for different sedimen-

tation coefficients the total time needed to reach the equi-

librium state is different. Hence the error curves dip at

different times. Furthermore, it can be seen from Fig. 11 that

for different s, the accuracy is different mainly at the beginn-

ing of the process. Once the solution profile is established,

the solution accuracy is almost the same for different s. This
can be explained by the fact that the Lamm equation is

sedimentation-free under the moving computation grids.

Therefore, the solution accuracy is almost independent of the

sedimentation coefficient.

To examine the accuracy with respect to the diffusion

coefficient D, we average the L2 error at each time-step t to
get an averaged global L2 error. More precisely, we consider

kc� cref k¼
1

Tðrb � raÞ

Z T

0

Z rb

ra

jcðr; tÞ�crefðr; tÞj2 drdt
� �1=2

;

where T is the duration of the experiment. The square of this

measure is equivalent to the variance for the samples

consisting of all the c(rj, tn) values. In Fig. 12 we plot the

FIGURE 10 Comparison of the evolution of the errors between the reference solution and the moving hat solutions or the ASTFEM solutions. (A and C) The

L2 error and the maximum error for the experiment setting in Example 1. (B andD) The L2 error and the maximum error for the experiment setting in Example 2.

Note that the ASTFEM solution achieves a lower error for all cases, and unlike the moving hat method, for N¼ 100 the ASTFEM solution remains stable and

accurate.
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averaged L2 error versus the reciprocal of the square root of
the diffusion coefficient. This graph indicates a linear rela-

tionship between the error and 1=
ffiffiffiffi
D

p
:

Combining the above observations, we conclude that away

from the meniscus and the bottom the error of the ASTFEM

solution is roughly a linear function of 1=
ffiffiffiffi
D

p
; and a quadratic

function of 1/N, and independent of s or v, i.e.,

k c� cref k� const:=ðN2
ffiffiffiffi
D

p
Þ: (18)

In practice, one may estimate the error by using the

Richardson extrapolation technique. More precisely, start

with a small N, say N¼ 100. Compute the ASTFEM solution

using N points. Then compute another ASTFEM solution

using 2N points, and by Eq. 18 we have

k c2N � cref k�
1

4
k cN � cref k :

Hence we have from the triangle inequality that

k cN � cref k # k cN � c2N k 1 k c2N � cref k

�k cN � c2N k 1
1

4
k cN � cref k;

which implies

k cN � cref k #
4

3
k c2N � cN k :

This can predict quite accurately the range of the actual error.

Listed in Table 2 is the comparison of the actual error against

a reference solution (obtained by using 1001 points), and the

difference jcN – c2Nj for N ¼ 101. Clearly this extrapolation

technique can be used to get an estimate of the actual error

and determine a proper N.

CONCLUSION AND DISCUSSIONS

In the previous sections we studied the behavior of three

numerical solutions of the Lamm equation, and proposed an

adaptive space-time finite element solution method. The

features of this ASTFEM approach include:

1. It is free from the oscillation typically observed at the

bottom of the cell with Claverie’s finite element method

and Schuck’s moving hat method in experiments with

large molecules and/or high rotor speed. Indeed, there is

no observable oscillation for the ASTFEM solution with

only ;100 points for any experimental parameter com-

bination we have tried, suggesting that the ASTFEM

solution provides superior robustness.

2. ASTFEM is much more accurate than Claverie’s fixed-

mesh or Schuck’s moving hat method in the region near

the cell bottom. It is also always more accurate than these

two methods in the other regions of the cell.

3. ASTFEM automatically guarantees mass conservation of

the Lamm equation without any post-processing.

4. The computational cost of ASTFEM is the same as for

Claverie’s and Schuck’s method. All of them need to

solve a tridiagonal linear system of equations with a fixed

FIGURE 11 The evolution of the L2-error k cðtÞ � crefðtÞ kL2 in time for

the ASTFEM solutions using N ¼ 101 and 201 for experiments of various

sedimentation coefficient s. Here the rotor speed was simulated at 50,000

rpm, D¼ 10�7, and m¼ 5.8, b¼ 7.2. This graph indicates that the accuracy

of an ASTFEM solution does not depend much on the s values when the

concentration boundary is in steady propagation. The same conclusion is

true for Claverie’s solution and the moving hat solution.

FIGURE 12 The averaged L2-error jc – crefj versus 1=
ffiffiffiffi
D

p
of the

ASTFEM solution for experiments of various diffusion coefficient D.

Here the rotor speed was simulated at 50,000 rpm, s ¼ 10�12, and m ¼ 5.8,

b ¼ 7.2. This graph indicates that the accuracy of an ASTFEM solution

increases as the diffusion coefficient D increases. The same conclusion is

also true for Claverie’s solution and the moving hat solution.

TABLE 2 The actual error kcN 2 crefk and the difference of two numerical solutions kcN 2 c2Nk for the case m ¼ 5.8, b ¼ 7.2,

s ¼ 1e – 12, 50,000 rpm, and N ¼ 101

D ¼ 1e � 7 D ¼ 2e � 7 D ¼ 4e � 7 D ¼ 8e � 7

kcN – crefk 1.01579e � 03 6.54426e � 04 4.36885e � 04 2.99125e � 04

kcN – c2Nk 1.00326e � 03 6.63717e � 04 4.51976e � 04 3.17079e � 04
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coefficient matrix for each time-step. Therefore, we

conclude that ASTFEM is superior to both Claverie’s and

Schuck’s methods.

The significance of the improvements in accuracy and

concomitant efficiency are important for several reasons. The

numerical solution of the Lamm equation by finite element

methods is computationally relatively expensive. Nonlinear

least-squares fitting of experimental sedimentation data with

such solutions is an iterative process that often requires many

repetitions of function evaluations. Statistical analysis of

fitting results with Monte Carlo requires several thousand

evaluations. Thus, improvements in efficiency are amplified

in fitting applications and statistical analysis. In addition, the

robustness displayed by the ASTFEM method is important

for the stability of unconstrained fitting sessions where param-

eters may assume values under which the moving hat or

fixed-mesh method will simply fail, but ASTFEM solutions

will remain well-conditioned.

The idea of space-time finite element discretization can

be extended directly to the cases of interacting and self-

association systems, and cases for concentration dependency

of s and D. One of the advantages of the ASTFEM approach

is that the mass conservation is satisfied automatically in these

cases. We will report the numerical solution and results for

interacting and concentration-dependent solutes in a forth-

coming publication.

It is noted that we only attempted to use adaptivity around

the cell bottom. Mesh adaptation to the concentration

boundary would require the update of the coefficient matrix

of the linear system, which increases the computational work

substantially. However, for cases where the diffusion or

sedimentation coefficients are dependent on the concentra-

tion itself, the coefficient matrix needs to be updated from

time to time anyway, and then such adaptation will not

introduce additional work to the solution procedure. This is

a topic under current investigation.

The ASTFEM method is programmed in the UltraScan software, which is

available for free download from our website (http://www.ultrascan.

uthscsa.edu) for all major computer platforms (see also Demeler (13)).
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