
Parsimonious Regularization using Genetic Algorithms
Applied to the Analysis of Analytical Ultracentrifugation

Experiments

Emre H Brookes
Department of Computer Science
University of Texas at San Antonio

One UTSA Circle
San Antonio, TX 78249-1664 USA

ebrookes@cs.utsa.edu

Borries Demeler
Department of Biochemistry

University of Texas Health Science Center at
San Antonio

7703 Floyd Curl Drive
San Antonio, TX 78229-3900 USA

demeler@biochem.uthscsa.edu

ABSTRACT
Frequently in the physical sciences experimental data are
analyzed to determine model parameters using techniques
known as parameter estimation. Eliminating the effects
of noise from experimental data often involves Tikhonov
or Maximum-Entropy regularization. These methods in-
troduce a bias which smoothes the solution. In the prob-
lems considered here, the exact answer is sharp, containing
a sparse set of parameters. Therefore, it is desirable to find
the simplest set of model parameters for the data with an
equivalent goodness-of-fit. This paper explains how to bias
the solution towards a parsimonious model with a careful
application of Genetic Algorithms. A method of representa-
tion, initialization and mutation is introduced to efficiently
find this model. The results are compared with results from
two other methods on simulated data with known content.
Our method is shown to be the only one to achieve the
desired results. Analysis of Analytical Ultracentrifugation
sedimentation velocity experimental data is the primary ex-
ample application.

Categories and Subject Descriptors
G.1.6 [Numerical Analysis]: Optimization—Global opti-
mization, Least squares methods; J.3 [Life and Medical
Sciences]: Biology and genetics

General Terms
Algorithms, Design, Experimentation, Performance

Keywords
Genetic algorithm, Inverse problem, Regularization, Ana-
lytical ultracentrifugation

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
GECCO’07, July 7–11, 2007 London, England, United Kingdom.
Copyright 2007 ACM 978-1-59593-697-4/07/0007 ...$5.00.

1. INTRODUCTION
Analytical Ultracentrifugation (AUC) is a powerful tech-

nique for determining hydrodynamic properties of biological
macromolecules and synthetic polymers [7, 8, 18]. AUC can
be used to identify the heterogeneity of a sample in both
molecular weight and macromolecular shape. Since AUC ex-
periments are conducted in solution, it is possible to observe
macromolecules and macromolecular assemblies in a physi-
ological environment, unconstrained by a crystal structure
or electron microscope grid. Systems can be studied un-
der high concentrations or under very dilute conditions, un-
der virtually unlimited buffer conditions, and the methods
are applicable to a very large range of molecular weights,
extending from just a few hundred Daltons to systems as
large as whole virus particles. Results of these studies can
allow the researcher to follow assembly processes of multi-
enzyme complexes, characterize recombinant proteins and
assess sample purity before proceeding to NMR or X-ray
crystallography experiments. The techniques addressed in
the paper are currently being used in AUC studies focusing
on macromolecular properties of systems related to disease,
cancer and aging.

In AUC sedimentation velocity experiments a sample in
solution contained in a sector shaped cell is placed in the
ultracentrifuge. The ultracentrifuge is started and run at
speeds from 2,000 to 60,000 RPM. At regular time inter-
vals, the instrument records a radial concentration profile
of the cell determined from light absorbance at a particular
wavelength of light (see Figure 1). At the beginning of the
experiment, the sample is uniformly distributed throughout
the cell and therefore the first observation shows a uniform
radial concentration profile. As the experiment progresses,
the centripetal force, which can be as high as 230,000 g,
causes the sample to sediment towards the bottom of the
cell. After several hours or more, depending on the sam-
ple and the speed of the ultracentrifuge, the sample will be
fully sedimented and further observations will contain an
unchanging radial concentration profile of an exponential
form. Radial concentration profiles are typically displayed
superimposed as shown in Figure 2.

The sample may contain several solutes, each a differ-
ent type of molecule present at some concentration. The
behavior of an ideal solute is well described by a second

361

order PDE known as the Lamm equation [14] and can be
solved by finite element modeling (FEM) [6]. Given prede-
termined constant experimental parameters such as speed,
temperature, viscosity and density of the solution, each so-
lute’s behavior can be described by a FEM solution of the
Lamm equation of two parameters, the sedimentation coef-
ficient s and frictional ratio k. The frictional ratio k is a
measure of shape with a minimum value of 1 for a spherical
molecule. Increasing values of k correspond to increasingly
elongated molecules. An example set of parameters for a
3 solute system is shown in Table 1. Since superposition
holds for multiple non-interacting solutes in such a setup, it
is straightforward to simulate the experimental results for
known multiple solute systems. It is much more difficult
to determine the solute parameters, s and k, for unknown
samples. If one can determine all solute parameters from
experimental results, their molecular weights can be com-
puted. It is very difficult to determine even the number of
different types of solutes present. Knowing the number of
solutes, their molecular weights, concentrations, and shapes
is of primary importance to the researcher. Our techniques
address these problems.

Figure 1: The basic AUC experimental setup. The
sector-shaped cell is loaded with a sample and put
into the ultracentrifuge. An observation is taken
of the cell which creates data containing a radial
concentration profile as shown at the bottom of the
figure.

MW s coefficient frictional ratio k concentration
1e4 1.3269e-13 1.3139 0.3
2e4 2.7675e-13 1 0.2
4e4 1.9214e-13 2.2865 0.4

Table 1: A 3 solute system listing molecular weight
(MW) measured in Daltons, solute parameters s and
k and the loading concentration for each solute. s
and k are the target solute parameters which we
wish to discover with our analyses, from which we
compute MW and loading concentration.

Figure 2: Typical experimental data of superim-
posed observations taken at regular time intervals.
The horizontal axis corresponds to the radial axis
along the cell, with the meniscus at approximately
5.8 cm and the bottom of the cell at 7.2cm. The
vertical axis is the measured absorbance. The first
observation has a mostly uniform absorbance of 0.9.
These data resulted from the simulation of a 40k
RPM run of 24 hours duration using values from
Table 1. The program UltraScan [9] was used to sim-
ulate and display these data.

Mathematically, the experimental data are placed in a
vector b. The elements of b are the observed radial con-
centration profiles placed end-to-end for each time interval.
For example, if each radial concentration profile contains r
points, b[2r + 1] will contain the first radial concentration
of the third observation. Similarly, solutions to the Lamm
equation can be placed in vectors and collected into a ma-
trix A. Therefore, each column of A will be associated with
solute parameters s and k used to solve the Lamm equation.
Assuming the data contain normally distributed errors from
a distribution of constant variance, the best fit solution vec-
tor x, can be expressed as follows:

min
x
‖Ax− b‖2 (1)

Due to noise, b is not generally in the range of A, so that
a best fit solution is required. After solving eq. (1) for
x, each element of x will contain the concentration of each
solute associated with the corresponding column of A. Since
negative concentrations do not make physical sense, a non-
negatively constrained least squares minimization technique
known as NNLS [15] is used to solve this equation.

Let U be the universal collection of sets of all possible
solute parameters s and k. Let S be a finite subset of U.
Then given experimental data b, we can define a function:

f : S 7→ (x,R) (2)

which takes the input set, builds the matrix A, computes
the NNLS solution of eq. (1), and returns x and the root
mean square deviation (RMSD) of the vector difference be-
tween Ax and b, a scalar measure of the goodness-of-fit.
We introduce the following function:

nz : x 7→ N (3)

which counts the number of nonzero elements of x. Our
goal is to find the parsimonious set of solute parameters to

362

explain the data. This means that we wish to find the set
S that minimizes nz (x) and simultaneously maintains an
RMSD that approximates the level of noise in the experi-
ment.

Since we can not search all of U, we must select some
subset S to search. Good solutions are not obtained if S
does not contain representatives of all the solutes present
in the sample. For example, if the sample contains two
solutes, trying to solve f for just one of the solutes gives
erroneous results. Constraining the search space is the first
step towards application of all of the methods subsequently
described. The range of s can be constrained by the van
Holde-Weischet analysis [11]. Physical limits constrain the
frictional ratio k to a minimum value of one (a spherical so-
lute) and a maximum value from four for proteins to ten for
elongated DNA chains.

One method known as C(s) [16] takes a discrete subset
of values for s and uses a fixed value for k, then a one-
dimensional line search is performed on the RMSD of eq.
(2) over k. This method can be used when the value of k is
identical for all solutes in the sample. It is often the case
that the sample exhibits heterogeneity in k due to the pres-
ence of molecules with different shapes. Correct k values are
needed to compute accurate molecular weights, which C(s)
can not determine for the general case. Another method de-
veloped by the authors known as the two-dimensional spec-
trum analysis (2DSA) [3] places a two-dimensional grid over
the solute parameters s and k and evaluates f. 2DSA can
use moving grids and iterative searches to further refine the
solution. For C(s) and 2DSA, the results are a set of pa-
rameters that describe these data. (see Figures 3, 4). Nei-
ther method can generally give an accurate assessment of
the number of different solutes present in the sample. We
will describe a method using a GA to find the parsimonious
set of solute parameters that best describe the experimental
data in section 2 of this paper.

Figure 3: C(s) analysis of the 3 solute simulated
system of Table 1 comparing results without regu-
larization (a) and with regularization (b). X marks
the target solute parameter s and concentration in
the sample. The data were produced from the pro-
gram sedfit [16].

Figure 4: 2DSA analysis of the 3 solute simulated
system of Table 1. X marks the target solute param-
eters s and k in the sample. The circles are possible
solute parameters identified by the analysis.

Figure 5: This is a pictorial representation of the
association between the target solute parameters, a
set of buckets and the string of floats of the popu-
lation individual. Each target solute parameter is
marked with a dot. Each bucket is a box centered
around a solute parameter returned from a prelimi-
nary analysis method such as 2DSA. The population
individual will be initialized and mutated with ran-
dom values that are constrained by the values of
the associated bucket throughout the evolution of
the GA.

Experimental data contain noise which makes solving
these systems more difficult. For example, a fingerprint on
the cell often causes time invariant noise which can be re-
moved in a preprocessing stage [17]. Random noise is present
and can be as low as one percent on a well maintained ul-
tracentrifuge. Nevertheless, noise will have an effect on the
results obtained. This can result in false positive and inac-
curate solute parameters. Methods known as Tikhonov and
Maximum-Entropy regularization have been used to com-
pensate for the effects of noise [2, 5, 16]. These methods
penalize sharp peaks in the solution x, introducing a bias
which spreads the peaks. This increases the number of solute
parameters returned by f (see Figure 3), making it more dif-

363

Figure 6: This graph shows the automatically as-
signed buckets for initialization and mutation con-
straints of GA individuals based upon the 2DSA
analysis results of Figure 4. X marks the target
solute parameters in the sample.

Figure 7: This is a another view of the 2DSA analy-
sis of Figure 4. Although hard to see on this figure,
there are some false positives of small concentration
near 2.75e5 molecular weight. The correct molecu-
lar weights and concentrations are marked by X.

ficult to accurately determine the number of solutes present.
The correct solutions to the described experiments are ex-
tremely sharp, in that they contain a few point parameters
from an infinite space of possibilities.

Our contributions described in this paper are using a
Genetic Algorithm (GA) [12] for parsimonious regulariza-
tion and a method of data representation, initialization and
mutation for efficient convergence of the GA on this prob-
lem. Here, we compare the results obtained from the GA
with and without regularization and a method known as 2-
Dimensional Spectrum Analysis (2DSA) [3]. A preliminary
GA solution for this problem without parsimonious regu-
larization and our advanced initialization resulting in much
slower convergence was previously reported [4].

2. METHOD
In AUC sedimentation velocity experiments, we wish to

find the parsimonious set of solute parameters that best fit
the data. Other methods generally produce sets of solute
parameters with much higher cardinality than the actual
number of different solutes present. We will demonstrate
that this method can determine the actual number of differ-
ent solutes present in section 4.

Recall the basic procedure for determining solute param-
eters used in C(s) and 2DSA is to establish a set of solute
parameters S and apply f. Naturally, we choose sets of so-
lute parameters S as our population individuals and the
goodness-of-fit RMSD from f as a building block for our
fitness function. The GA population individuals are repre-
sented as a string of an even number of floats, containing
one s followed by one k value. Each sequential pair of s
and k values corresponds to a solute parameter of the set S.
Evaluating the fitness begins with an application of f of eq.
(2). The fitness is computed as follows:

fitness = rmsd ∗ (1 + (rf ∗ nz(x))2) (4)

Where rmsd is the RMSD from eq. (2) and rf is the regular-
ization factor. Positive values of rf penalize solutions with
greater numbers of non-zero parameters in the solution. rf
can be considered a penalty factor. Typically, we either use
rf =0 for no regularization or rf =.05.

Population initialization is critical to good performance.
We used a more naive initialization strategy in a previous
study [4], and although we achieved good final results, it
was not general enough (it could not solve systems with so-
lutes containing identical s values and differing k values), re-
quired some a priori knowledge, and took a lot of computa-
tion time. On one problem, the previous method took 1,000
CPU hours for a single GA solution. With our new meth-
ods, much better solutions are obtained for similar problems
in 5 CPU hours, which allows us to compute 100 repetitions
of the stochastic GA analysis in 500 CPU hours. We be-
lieve better performance could be obtained with further GA
tuning analysis for this problem.

The desire for a better initialization strategy for the GA
inspired the development of 2DSA which has become a
method in its own right. The key to initialization is to deter-
mine appropriate buckets for each possible solute parameter.
These buckets limit the range of s and k for initialization
and mutation. This requires each solute parameter of the
population individual to be positionally associated with a
bucket (see Figure 5). Since the number of buckets is prede-
termined (as will be shortly explained), our choice is to fix
the length of each population individual to the number of
buckets and positionally determine the association between
the individual’s solute parameters and the buckets. To de-
termine the values for the buckets (see Figures 4, 6), we
use the results from 2DSA to automatically compute buck-
ets as follows: Each solute parameter in the 2DSA solution
becomes the center of a bucket with a fixed range in s and
k. To insure no overlap occurs between buckets, overlapping
buckets are shrunk and new buckets (containing no solute
parameter of the 2DSA solution) are added to fill the space
of the originally determined bucket. The k range of a bucket
may be clipped at 1 since this is a physical limit.

364

The initialization strategy of our previous study parti-
tioned only the s range, while the k value of each solute
was allowed to float over the entire k range. The absence
of a constraint on k in our previous study caused its slow
convergence.

We use two methods to help maintain population diver-
sity: removal of duplicate population members and limiting
floating point resolution. Early in the generational loop af-
ter the population is sorted by fitness, we perform a pass
to remove any duplicate population members. If population
members have identical fitness, we must further check to see
if they contain the same set of solute parameters. To facil-
itate the comparison of solute parameters between individ-
uals, we disallow bucket overlap. Eliminating bucket over-
lap simplifies the comparison by allowing a simple positional
equality test of s and k values. We also fix the floating point
resolution of s and k to a predetermined number of signifi-
cant digits, typically 3 or 4. We believe it may be beneficial
to make the floating point resolution an increasing function
of the generation number. Combining the removal of du-
plicates and limiting resolution significantly helps maintain
diversity.

One point crossover is used exclusively, primarily because
our buckets are positionally determined. The break point for
crossover is at solute parameter boundaries to assure pairing
of s and k values. Intuitively, if we have one parameter
pair contributing well in the first half of one individual and
one parameter pair contributing well in the second half of
another then we could get a better fit solution via one point
crossover.

During the generational loop, when an individual is prob-
abilistically selected for mutation, exactly one of the solute
parameters is selected. Then, either the s, k or both values
are selected to mutate. For each value selected to mutate,
the procedure begins by computing a number m to add to
the selected value. m is decreased depending on the genera-
tion using the following equation where g is the generation:

gfactor = 6 ∗ log2(2 + 2 ∗ g) (5)

A random number m is selected from a normal distribution
with a mean of zero and a standard deviation equal to the
length of the corresponding bucket’s s or k range divided by
gfactor. gfactor slowly decreases the range of mutation as
the system evolves. The formula for gfactor was determined
by a visual inspection of its magnitude for g varying from
0 to 100 and is not known to be optimal for this problem.
Next, we add m to the selected value. Finally, if the selected
value falls outside of the corresponding bucket’s range for s
or k, we replace it with the bucket’s nearest in-range value.

We use standard values for most of the GA parameters
(see Table 2). The only parameters we generally adjust are
the number of demes based upon the number of processors
we wish to run on, the population sizes (determined coarsely
as 10 to 30 times the number of buckets), and the regular-
ization factor (zero or .05).

Summarizing our method, we start with experimental
data, determine s value constraints with the van Holde-
Weischet analysis, perform the 2DSA analysis, use the 2DSA
results to build buckets for GA initialization, then perform
100 iterations of the GA. In section 4 we will compare the
effect of using GA regularization on the results.

3. IMPLEMENTATION
The GA implementation of our method was written into

a genetic programming (GP) package of our own creation
written in C and based upon the GP model of John Koza
[13]. The software was initially written for a study of GP
on various problems. Our use of a GA to contain a GP is
not recommended but is nevertheless described. The data
structure of a GP population individual is a tree of nodes.
For our problem of parsimonious regularization we require
individuals consisting of a string of solute parameters. To
implement this in GP, we restrict our trees to use a branch-
ing factor of 1. We created a node type which contains the
solute parameters. Evaluating this node pushes the solute
parameters onto a stack. When the population individual’s
chain of nodes is fully evaluated, then the fitness computa-
tion of eq. (2) can proceed using values from the stack for
the set S. In this way, we contain GA functionality within
the GP.

Features of our software include demes with a bidirec-
tional ring topology for migration. We use MPI for commu-
nication in a distributed environment. For the researcher,
there is a public web interface available to submit these jobs
to a queued environment [10].

We currently run these analyses on several different local
clusters running variants of Linux, as well as on resources
made available through TeraGrid.

Parameter Value used
Population size 200

Generations 100
1 pt Crossover % 50

Mutation % 50
Elitism 2

Number of Demes 10
Deme Migration % 3
Selection method Exponential by fitness

Table 2: The GA parameters used for analysis.
These values are fixed for runs with no regulariza-
tion and with regularization.

Method No. of Parameters RMSD
C(s) - no regularization 3∗ 1.5807e-2

C(s) - regularization N/A∗ 1.5949e-2
2DSA 18 4.513e-3

GA rf =0 10.62 4.586e-3
GA rf =0.5 3.62 4.542e-3

Table 3: Comparing the number of solute parame-
ters and goodness-of-fit returned for C(s) with and
without regularization, 2DSA, GA without regular-
ization rf =0, and GA with regularization rf =.05 for
simulated experimental data of 3 solutes (Table 1).
For the GA runs, the number is the average of 100
GA iterations. ∗ Results produced by sedfit for C(s)
do not provide the number of solute parameters, 3
is by visual inspection of the graphical output.

365

Figure 8: The GA analysis results. The GA was
run using the parameters of Table 2, the buckets
of Figure 6 and without regularization. These data
contain the superposition of 100 iterations of the
GA. X marks the target solute parameters from Ta-
ble 1. Note that the target solute parameters are
identified but there are multiple false positives, as
in the original 2DSA analysis.

Figure 9: This is another view of the GA analysis
without regularization of Figure 8. The vertical axis
of relative concentration needs to be multiplied by
100, the number of GA iterations. X marks the
target solute molecular weights and concentrations.

4. RESULTS
The ‘No Free Lunch’ theorems [19] imply that for any

search method a problem can be developed where the
method performs worse than random guessing. We wished
to determine if the GA was better than random guessing
for solving this specific problem. To achieve this, we ran
three different tests: random-guessing, mutation-only and
mutation-with-crossover. All of the tests were run on the
same data sets with identical GA parameters. For our
random-guessing test we created a random population of
1,000 individuals with 1 generation (by this we mean sim-
ple initialization and no runs through the generational loop).
For our mutation-only and mutation-with-crossover tests we
created a random population of 100 individuals with 10
generations. For each test we ran 30 trials. It was ob-
served that mutation-with-crossover outperformed each trial

Figure 10: Results of GA with regularization. This
run was identical to the run of Figure 8 except regu-
larization was used (rf =.05 in Equation 4). X marks
the target solute parameters in the sample. Note
since the dots representing each solution are very
tight for the middle solute parameter, it might not
be obvious that there are 100 superimposed solution
solute parameters under that X.

Figure 11: This is another view of the results from
the regularized GA analysis of Figure 10. The verti-
cal axis of relative concentration needs to be multi-
plied by 100, the number of GA iterations. X marks
the target solute molecular weight and concentra-
tion.

of mutation-only which outperformed each trial of random-
guessing (data not shown). Therefore, we conclude that the
GA is useful for solving this specific problem.

To test the effects of regularization, we simulated a sys-
tem with three different solutes containing noise of the same
quality as what would have been observed in an actual ex-
periment and compared C(s), 2DSA, and GA analyses with
and without regularization. Using such data permits us to
compare the results to a set of known input parameters, yet
we faithfully reproduce a realistic experiment. The simu-
lated experimental data were produced using the UltraScan
software [9]. The target solute parameters are shown in Ta-
ble 1. From the simulated experimental data, the van Holde-
Weischet analysis was performed to determine the range of
the s values.

366

Our first analysis was run with C(s). The results are
shown in Figure 3. The C(s) analysis only reports s values
and concentrations. The s values were missed by C(s), al-
though it did seem to indicate three different solutes present.
No correct molecular weights could be computed from these
data. Adding regularization to the C(s) analysis did not
seem to improve the quality of this result and made it less
clear how many solutes were present. From the figure, one
can see the effect of regularization where the sharp peaks
are penalized.

Next a 2DSA analysis was run on these data and a so-
lution containing 18 solute parameters was returned. The
results are shown in Figures 4 and 7. 2DSA did manage
to accurately locate the three target solute parameters, but
also reported multiple false positives. The molecular weights
were correctly reported. From this information it does ap-
pear there are three solute molecular weights present, from
which one could infer that three solutes are present in the
data. The relative concentrations of the three solutes are
incorrect.

The results from the 2DSA analysis were used to gen-
erate buckets for GA initialization as shown in Figure 6.
The 18 solute parameters of 2DSA resulted in 21 buckets
due to the processing involved in eliminating overlapping
buckets. Using these buckets, we ran 100 iterations of GA
analysis without regularization using the parameters of Ta-
ble 2. The results of this analysis are shown in Figures 8
and 9. This method returned an average of 10.62 solute
parameters per iteration. The resulting number of solute
parameters is much greater than the target 3 present in the
simulated data, but less than the 18 returned by the 2DSA
analysis and also less than the 21 buckets used for initializa-
tion. The GA without regularization, similar to the 2DSA
analysis, identified the target solute parameters, but still
included multiple false positives. The GA without regular-
ization did, however, do a much better job at estimating the
relative concentrations of the solutes than the 2DSA alone.

An identical 100 iterations of GA was run with regular-
ization and the results are shown in Figures 10 and 11. In
this case, an average of 3.62 solutes were reported, closely
matching the actual three solutes. There is a split in the
data for smallest sedimentation coefficient, and it is known
that slower sedimenting solutes (with smaller s values) are
harder to resolve. There is an excellent match for the faster
sedimenting solutes. This is in excellent correspondence
with our original simulation data of Table 1. The quality
of the results is clearly much better than any other method.
The false positives are eliminated and the molecular weights
and concentrations are correctly identified. This is summa-
rized in Table 3. GA without regularization provided a more
parsimonious solution than 2DSA. GA with regularization
found by far the most parsimonious solution.

An important issue is the quality of the final results ob-
tained in terms of goodness-of-fit as measured by RMSD.
These values were computed for each analysis type and are
summarized in Table 3. The RMSD was comparable in all
methods, except the C(s) method which failed to adequately
describe the system, and closely matched the known level of
noise.

Visual inspection of the residual vectors indicated no sys-
tematic error in the solutions provided by any of the meth-
ods, except again the C(s) method, which failed to account
for the heterogeneity in k. GA with regularization does not
suffer from the number of false positives reported by the
other methods, and was the only method to give precise
concentrations for the molecular weights observed.

Our results clearly show the significant benefit of using the
GA for parsimonious regularization. This work is being used
by researchers worldwide in the analysis of AUC experiments
and implemented by the authors in [9].

5. FUTURE
The success of our method brings up some interesting

questions for further research. Determining the ideal size
of buckets is of importance. Larger buckets increase the
search space and subsequently slow convergence. Whereas,
making the buckets too small can potentially miss optimal
solute parameters. Other shapes of buckets (elliptical) could
be examined. We have used a constant regularization factor
of .05. The sensitivity of the algorithm to the regularization
factor has yet to be thoroughly researched. It is possible
that the regularization factor can be eliminated from the
algorithm by replacing the fitness function, eq. (4), with
the Akaike Information Criteria [1]. We plan to examine a
much larger range of simulated and experimental systems
over the next year to determine the resolving ability of the
algorithm.

6. CONCLUSION
We have presented a new method using a GA with regu-

larization for parsimonious solutions in AUC. The method
correctly indicates the number of solute parameters present
in the data with identical fitness to much less parsimonious
solutions. False positives are removed and the information
in the final result closely matches the original model used
to produce the experimental data. This is of major impor-
tance to the researcher, as this is the first known method to
do so and can subsequently give the most accurate molecular
weight and shape determinations.

We believe this method may have application to other pa-
rameter estimation or inverse problems, such as astronomi-
cal image reconstruction, where non-negatively constrained
least squares methods are used.

7. ACKNOWLEDGMENTS
We would like to thank the reviewers of this paper for

their helpful suggestions and Jeremy Mann for assistance
with the BCF Linux cluster.

This research has been supported by NSF Grant DBI-
9974819, NIH-RRR022200 and the San Antonio Life Science
Institute with Grant #10001642, all to B.D.

8. REFERENCES
[1] H. Akaike. A new look at the statistical model

identification. In IEEE Transactions on Automatic
Control, volume 19, pages 716–723. IEEE, 1974.

367

[2] R. C. Aster, B. Borchers, and C. H. Thurber.
Parameter Estimation and Inverse Problems. Elsevier
Academic Press, London, 2005.

[3] E. H. Brookes, R. V. Boppana, and B. Demeler.
Computing large sparse multivariate optimization
problems with an application in biophysics. In
SuperComputing 2006 Conference Proceedings. ACM,
IEEE, November 2006.

[4] E. H. Brookes and B. Demeler. Genetic algorithm
optimization for obtaining accurate molecular weight
distributions for sedimentation velocity experiments.
In Analytical Ultracentrifugation VIII, Progr. Colloid
Polym Sci. 131, pages 78–82. Springer-Verlag, 2006.

[5] P. H. Brown and P. Schuck. Macromolecular
size-and-shape distributions by sedimentation velocity
analytical ultracentrifugation. Biophysical Journal,
90:4651–4661, June 2006.

[6] W. Cao and B. Demeler. Modeling analytical
ultracentrifugation experiments with an adaptive
space-time fine element solution of the lamm equation.
In Biophys J., volume 83, pages 1589–1602, 2005.

[7] J. L. Cole and J. C. Hansen. Analytical
ultracentrifugation as a contemporary biomolecular
research tool. In J. Biomolecular Techniques,
volume 10, pages 163–174, 1999.

[8] B. Demeler. Hydrodynamic Methods. In
Bioinformatics Basics: Applications in Biological
Science and Medicine. 2nd Edition, pages 226–255.
CRC Press LLC, 2005.

[9] B. Demeler. UltraScan: A Comprehensive Data
Analysis Software Package for Analytical
Ultracentrifugation Experiments. In Modern
Analytical Ultracentrifugation: Techniques and
Methods, pages 210–229. Royal Society of Chemistry,
UK, 2005.

[10] B. Demeler et al. Center for analytical
ultracentrifugation of macromolecular assemblies.
http://bcf.uthscsa.edu/cauma.

[11] B. Demeler and K. E. van Holde. Sedimentation
velocity analysis of highly heterogeneous systems. In
Anal. Biochem., volume 335, pages 279–288, 2004.

[12] J. H. Holland. Adaptation in Natural and Artificial
Systems, 2nd Edition. MIT Press, Cambridge, MA,
1992.

[13] J. R. Koza. Genetic Programming. MIT Press,
Cambridge, MA, 1992.

[14] O. Lamm. Die differentialgleichung der
ultrazentrifugierung. In Ark. Mat. Astrol. Fys.,
volume 21B, pages 1–4, 1929.

[15] C. L. Lawson and R. J. Hanson. Solving Least Squares
Problems. Prentice Hall, New Jersey, 1974.

[16] P. Schuck. Size-distribution anal. of macromolecules
by sedimentation velocity ultracentrifugation and
lamm equation modeling. In Biophys. J., volume 78,
pages 1609–1619, 2000.

[17] P. Schuck and B. Demeler. Direct sedimentation
analysis of interference optical data in analytical
ultracentrifugation. In Biophys. J., volume 76, pages
2288–2296, 1999.

[18] K. van Holde. Physical Biochemistry, 2nd Edition.
Prentice Hall, New Jersey, 1985.

[19] D. H. Wolpert and W. G. Macready. No free lunch
theorems for optimization. In IEEE Transactions on
Evolutionary Computation, volume 1, pages 67–82.
IEEE, 1997.

368

