
ORIGINAL CONTRIBUTION

Parallel computational techniques for the analysis
of sedimentation velocity experiments in UltraScan

Emre Brookes & Borries Demeler

Received: 27 March 2007 /Revised: 20 May 2007 /Accepted: 5 June 2007 / Published online: 11 July 2007
Springer-Verlag 2007

Abstract The advent of parallel computing technology
and low-cost computing hardware has facilitated the adop-
tion of high-performance computing tools for the analysis
of sedimentation data. Over the past 15 years, we have
developed the UltraScan software (Demeler et al., http://
ultrascan.uthscsa.edu) to support sedimentation analysis,
experimental design, and data management. We describe
here recent extensions and advances in methodology that
have been adapted in UltraScan. High-performance com-
puting methods implemented on parallel supercomputers
utilizing grid computing technology are used to analyze
sedimentation experiments at much higher resolution than
was previously possible. We discuss the implementation
of parallel computing in three novel algorithms used in
UltraScan for modeling of sedimentation velocity experi-
ments and provide guidelines for effective data analysis.

Keywords Two-dimensional spectrum analysis . Genetic
algorithms .Monte Carlo .MPI

Introduction

Analytical ultracentrifugation (AUC) has long played a
central role in the characterization of solutions containing

colloidal suspensions and biological and synthetic polymers.
The ability to separate individual components based on
shape and mass by performing sedimentation experiments
has provided significant insights into macromolecular
solutions. In AUC experiments, transport due to sedimen-
tation and diffusion is observed, and from these observa-
tions, mass and macromolecular shape parameters can be
determined. We describe here recent advances in the
methodology that extend significantly the resolution and
detail that can be determined. These advances address a
major difficulty: the convergence of optimization algorithms
used for fitting experimental data. Especially for cases where
heterogeneity is involved, accurate description of all of the
components is a significant challenge, and existing methods
for parameter estimation encounter a number of obstacles
that are difficult to remove. Additional complexity is en-
countered when the heterogeneity is not only present in the
mass distribution but also in the macromolecular shape.
The reason for the difficulty to describe such heterogeneity
is related to the complexity of the error surface during
parameter optimization and the presence of noise in the
data. We show that implementation of high-performance
computing technology in conjunction with our new opti-
mization methods can successfully address these challenges
and provide superior results.

Computer performance has been increasing in accord
with Moore’s law [1], while simultaneously, the cost of
computer hardware has been decreasing. Combined with
the availability of modern computer languages and software
libraries, these factors have made high-performance com-
puting accessible to researchers. Computationally complex
algorithms that were merely of theoretical interest just a few
years ago can now be routinely implemented on ordinary
computer hardware. In addition to the availability of faster
computing hardware, the techniques of high-performance

Colloid Polym Sci (2008) 286:139–148
DOI 10.1007/s00396-007-1714-9

E. Brookes
Department of Computer Science,
The University of Texas at San Antonio, One UTSA Circle,
San Antonio, TX 78249-1644, USA

B. Demeler (*)
Department of Biochemistry, University of Texas Health
Science Center at San Antonio,
7703 Floyd Curl Drive, MC 7760,
San Antonio, TX 78229-3901, USA
e-mail: demeler@biochem.uthscsa.edu

computing enable the implementation of parallel algorithms
to accelerate demanding numerical calculations. Instead of
running an algorithm on a single processor, new architec-
tures allow the same algorithm to be calculated on multiple
processors simultaneously. With careful design of a parallel
algorithm, significant speed increases can be obtained. In
this work, we describe how these advances in parallel
computing technology can be appropriated by the field of
AUC for the analysis of sedimentation experiments. The
increased computational power afforded by parallel com-
puting allows us to analyze sedimentation data at much
higher resolution than is possible with traditional methods,
without sacrificing computational speed.

Before our work, no attempts were made to parallelize
algorithms used in the analysis of AUC experiments. To
this end, we have developed three new parallel algorithms
for AUC analysis, the 2-Dimensional Spectrum Analysis
(2DSA) [2], the Genetic Algorithm for AUC analysis (GA)
[3], and Monte Carlo (MC) versions of 2DSA and GA
(2DSA-MC and GA-MC). These methods allow advanced
analysis of the experimental data providing results that were
not possible to attain before the advent of high-performance
parallel computing.

In this paper, we will present a brief background on
parallel processing, an overview of our analysis methods, a
description of their parallel implementation, and a descrip-
tion of the methodology of sequentially executing the three
methods to provide high-resolution results. Running jobs
on high-performance parallel computing resources is histor-
ically a cumbersome process, requiring esoteric command-
line batch packaging and submission of jobs. To address
this issue, we have developed a convenient web interface to
allow the researcher to easily process experiments from a
web browser and obtain results in a format compatible with
the UltraScan package.

Parallel processing background

A modern computer generally contains one or more main
processors. Today’s high-performance computer system
typically consists of a cluster of computers connected with
a fast communications network. Each processor is capable
of executing the steps of an algorithm represented as a
serial stream of instructions. To execute an algorithm on
multiple processors in parallel requires that a set of instruc-
tions is made available to each processor and that some
method of communication between the processors exists.
A processor can be in one of three states: computing,
communicating, or idle. During computing the processor is
executing the algorithm, during communicating the proces-
sor is busy sending or receiving messages from other
processors, and during idle cycles the processor is waiting

for communications or has completed all work on the
algorithm. If a processor must communicate intermediate
results to other processors during the execution of a
parallel algorithm, a processor waiting for results may sit
idle. The balance of time spent among the three states of a
group of processors is of critical importance to the design
of parallel algorithms. Algorithms that spend a large
percentage of time computing between communications
are called coarse-grained, and those that must communi-
cate frequently are termed fine-grained. Algorithms that run
on multiple processors with very little or no communication
are called embarrassingly parallel. The efficiency of a
parallel algorithm is the time spent computing divided by
the total time (communicating + computing + idle). Coarse-
grained or embarrassingly parallel algorithms often exhibit a
high efficiency. The efficiency of a parallel algorithm may
change based on the size of the problem and number of
processors used. A parallel algorithm that maintains a high
efficiency with increasing numbers of processors and
problem size is said to scale efficiently.

We illustrate the three states of a parallel algorithm by
means of a simple example. Calculation of the sumP20

i¼1 F xið Þ could be accomplished by adding the results
of two partial sums

P10
i¼1 F xið Þ and

P20
i¼11 F xið Þ. By

calculating each partial sum on a different processor, the
time required to calculate the total sum is cut in half.
During the calculation, both processors are in the calcula-
tion state. To form the total sum, processor 2 needs to
communicate the result of its partial sum to processor 1.
During this time, both processors are in the communication
state. Finally, the value of the two partial sums must be
added by processor 1 to its partial sum to obtain the final
result. During this time, processor 2 is in the idle state.
Clearly, the goal of efficient parallel code design is to
minimize the time spent in the communication and idle
states. Efficient parallel algorithms have been designed for
many problems including matrix–matrix, matrix–vector
multiplication, Gaussian elimination, fast Fourier trans-
forms, sorting, and searching [4]. Attempts at automatic
parallelization have been made [5], but these tools generally
offer much lower performance improvement than tedious
hand coding. All our parallelization in UltraScan is hand
coded.

Executing jobs on high-performance parallel systems is
different than running a program on a desktop computer.
Parallel machines are generally dedicated to a single
process at a time, and execution is controlled through a
queue mechanism, where requests are added to the queue
and released from the queue when sufficient resources are
available to execute the process. A compute request gen-
erally includes a list of resources required to execute the
process, such as required memory, diskspace, and num-
ber of processors. Based on this information, the process

140 Colloid Polym Sci (2008) 286:139–148

controlling queue will allocate resources and schedule job
execution.

Analysis methods

The 2DSA, 2DSA-MC, GA, and GA-MC algorithms are all
methods for determining the composition of a heteroge-
neous mixture of a colloidal or polymer solution. Parameters
of interest include the number of different solutes present
in the solution, each solute’s partial concentration, as well
as the shape and the molecular weight of each solute. This
information can be extracted from AUC sedimentation
velocity experimental data. The underlying method in each
approach consists of determining some likely set of solutes
G, solving the Lamm equation [6] for each solute, and
using the nonnegative least squares [7] algorithm to reduce
G to a set of contributing solutes G′ (see Figs. 1 and 2). The
goodness of fit of G′ to the experimental data is measured
by the root mean square deviation (RMSD). Each element g
of the set G is a pair of parameters, a sedimentation
coefficient s and a frictional ratio f/f0. Equivalently, each
element g of G is a point in the s, f/f0 plane. If s and f/f0 of
a solute are known, the molecular weight of the solute can
be computed. Previous methods could only estimate s and
at best report an average f/f0, but reliable molecular weights
were not available.

2-Dimensional Spectrum Analysis In 2DSA, we place a
two-dimensional grid on the s, f/f0 plane (see Fig. 1). We

constrain values of s with the enhanced van Holde–Weischet
analysis [8]. f/f0 is generally constrained to values between
1 (spherical) and 4 (rod-shape). In the serial implementation
of the 2DSA algorithm, a uniform grid is placed within the
constrained range of the s, f/f0 plane. These grid-points
define G from which G′ can be computed. The serial
algorithm faces a significant disadvantage: To assure that
each solute g is correctly identified, the grid needs to be
aligned with the parameters of the actual solute present in
solution. This in turn requires a high-resolution grid, whose
computation demands significant workspace memory. The
parallel 2DSA algorithm solves this problem by dividing
the high-resolution grid into multiple lower-resolution
grids, which can be combined to form the high-resolution
grid. The low-resolution grids are produced by moving an
initial low-resolution grid incrementally in the s and f/f0
directions until all desired grid points have been covered by
grids {G1, G2,..., Gn} (see Fig. 3). Each grid {G′, G

0
1, G

0
2,...,

G
0
n} can be independently computed on multiple process-

ors. Next, we let G1 be the union of {G′, G
0
1, G

0
2,..., G

0
n} and

compute G1′ on one processor (see Fig. 4). This grid-level
parallelization of the 2DSA approach represents a very
efficient distribution of the calculation load. In general, G1

may also be too large to compute on one processor, so we
apply the method recursively in the multistage 2DSA
method, which is shown in Fig. 5. For the highest quality
result, result G1′ can further be unioned back into each of G,
G1, G2,..., Gn in an iterative method as shown in Fig. 6
where this process is repeated until no further change is
observed, and the solution is converged on a stable grid
solution. The final result from a 2DSA analysis is denoted
by G

0
2DSA. Parallelization of 2DSA is considered relatively

Fig. 1 An example of a two-dimensional grid used in 2DSA. This is a
representation for the set G, a set of points representing likely solutes.
G is evaluated for fitness to the experimental data, and the points
contributing to the best fit solution are collected in G′, a subset of G as
shown in Fig. 2

Fig. 2 The results of a 2DSA analysis using the set G of Fig. 1. This
is a representation for the set G

0
2DSA, the best contributing components

from a set G. The thickness of each point is proportional to the relative
concentration of each component of G′

Colloid Polym Sci (2008) 286:139–148 141

coarse grained and has been shown to scale efficiently on
up to 512 processors [2].

Genetic Algorithm Unlike the single G as used in 2DSA, a
genetic algorithm [9] contains a collection of sets G termed
a population of individuals, where each individual repre-
sents a group of solutes, which approximate the entire col-
loidal sample. The evolution of genetic algorithm proceeds
as follows: A population of individuals is randomly initial-
ized. Then, a generational loop is run in which individuals
are randomly selected for reproduction based upon fitness,
and then the individuals are recombined or mutated to
produce a new population in the next generation. The gen-
erational loop repeats for some predetermined number of
generations. An individual’s fitness is determined by the
RMSD of G′. If parsimonious regularization (a method to
find the set G with the fewest number of elements with a

comparable RMSD [10]) is used, the fitness of the indi-
vidual is penalized in relation to the number of elements in
G. To accelerate convergence of the optimization, proper
initialization of each G in the population is critical. We
have found that excellent initialization results can be
obtained by preprocessing the data with the 2DSA method.
We use the 2DSA output G

0
2DSA

� �
and draw a rectangular

region in the s, f/f0 plane around each element of G
0
2DSA

� �

(see Fig. 7). This region is termed a bucket. We require the
buckets to be nonoverlapping. If buckets overlap, we
subdivide each overlapping bucket into multiple nonover-
lapping buckets covering the same region. For a typical GA
analysis, we start with a population of approximately 100
individuals G, each containing elements g that have been
initialized with a random s, f/f0 value drawn from each
bucket identified above (see Fig. 8). Therefore, if the 2DSA
method resulted in 30 individuals G

0
2DSA

� �
, our initializa-

tion will identify 30 buckets (or more, if subdivision is
required due to overlap), and each of the 100 individuals G
contains 30 or more elements g. When an individual G is
randomly selected to mutate during the generational loop,
an element of an individual G is randomly changed, but it
will remain constrained by the range of the bucket associated

Fig. 4 The first row of boxes contains the sets G, G1, G2, and G3. The
bottom box contains G1, the union of the sets G′, G

0
1, G

0
2, and G

0
3. The

final result is G1′. The first row is computed on different processors,
but the final result is computed on one processor

Fig. 5 The 2DSA multistage method. In this case, the size of the
unions of the results from the first row (see Fig. 4) are too large to
compute on a single processor and must be computed in groups

Fig. 6 The 2DSA iterative multistage method. In this case, the results
of each multistage solution are unioned back into the initial sets G, G1,
G2,...Gn, and the process is repeated until the final result is
unchanging. This achieves the highest quality result

Fig. 3 The movement of a 2DSA grid G (see Fig. 1) to produce G1.
The gray points are the elements of G, and the black points are the
elements of G1. The parallel 2DSA algorithm will evaluate G

0
1 on a

separate processor than G′

142 Colloid Polym Sci (2008) 286:139–148

with its creation. Furthermore, during recombination, when
two individuals are selected, the recombination will always
be between associated buckets.

GA optimization involves the creation of multiple
populations, termed demes (see Fig. 9). The purpose for
maintaining multiple demes can best be understood by
analogy with biological populations: A species derives
benefit from genetic diversity, which is maintained by
keeping subpopulations in geographically diverse regions.
Parallelization is achieved by calculating each deme inde-
pendently on a different processor. Each deme runs its own
generational loop. When evaluating multiple demes, we also
need to consider exchange of information between demes.
Individuals within the deme are randomly selected for
emigration to another deme with a user-selected migration
rate probability. Migration occurs during the generational

loop. At the end of the generational loop, the emigrants are
communicated to a master process, which stores all emi-
grants. At the beginning of the generational loop, the master
process is asked for the list of any immigrants. By brokering
emigrants through the master process, all deme calculations
can proceed asynchronously without the need to wait for the
completion of another deme. This eliminates the requirement
for keeping all demes at the same generation, and any deme
can receive immigrants from any other deme at earlier or
later generations without penalty. Running multiple demes
implies a migration topology, where migration can only
occur between certain processors. In our GA, we run a
bidirectional ring topology, where each deme’s individuals
can migrate between two neighbors. GA deme paralleliza-
tion is embarrassingly parallel and scales efficiently. The
final result for a GA is denoted G

0
GA.

Monte Carlo analysis The MC method is used to amplify
true signal away from background noise and to provide
parameter value distributions, which can be used to evaluate
the confidence intervals of each parameter. Our MC ap-
proach can be applied to either 2DSA or GA optimization
results. The MC process is started by performing a 2DSA or
GA optimization, resulting in a best fit G′. Visual inspection
of residual bitmaps and run patterns should confirm that
only random deviations are present in the residuals before
any MC analysis is attempted.

MC is performed by creating a vector of absolute values
of the residuals. Residuals are calculated from the differ-
ence between the G′ model and the experimental data and
represent an estimate of the magnitude of random noise
present at each point in the experimental data. This vector is
then slightly smoothed with a Gaussian kernel. Next, for

Fig. 8 An individual set G in the GA population. Each bucket (see
Fig. 7) contains a set element constrained by the bucket. Different
individuals in the GA population will have different elements, but they
will all be constrained by the buckets, and exactly one element of set
G will be in each bucket

Fig. 9 A representation of four demes in a parallel GA job. Each
deme contains its own population, a collection of individuals G, and
runs on a separate processor. During the evolution of the GA,
migration occurs between connected demes as represented by the
double arrows. Migration is probabilistic and is controlled by the GA
migration rate

Fig. 7 The buckets produced around a 2DSA analysis for initializa-
tion of the GA. Each bucket is centered around an element of the
2DSA solution G

0
2DSA

Colloid Polym Sci (2008) 286:139–148 143

each vector element, we define a new, randomly generated
residual with a zero mean and a standard deviation equiv-
alent to the vector entry at each point. The new randomly
generated residuals are added to the corresponding points in
the best fit G′ solution from either 2DSA or GA, generating
a new and equivalent pseudo-experimental dataset. During
parallel execution of MC, the pseudo-experimental data are
produced by a master process and communicated to all
other processors. Each pseudo-experimental dataset is re-
fitted with the 2DSA or GA optimization method, pro-
ducing a series of new G

0
MC1; G

0
MC2; . . . ; G

0
MCn. The final

result G
0
MC is the union of G′ and the results of every

iteration of the MC. The MC methods scale efficiently.
More detail on the MC methods is available in [11].

Implementation

Our parallel analysis methods require high-performance
computing resources. These resources consist of multiple
clusters and a software module that submits analyses to
these resources. Communication between processors within
a cluster is accomplished with the MPI (MPI Forum, http://
www.mpiforum.org) message passing interface library. We
have developed a convenient web interface, available to the
public, to submit analyses to both our local cluster and
multiple remote clusters. All clusters addressable by Ultra-
Scan are part of the Texas Internet Grid for Research and
Education (TIGRE; http://www.hipcat.net/projects/tigre).
TIGRE is a large grid computing infrastructure developed
by the consortium for High-Performance Computing in
Texas (HiPCaT: Consortium for High-Performance Com-
puting across Texas, http://www.hipcat.net). The TIGRE
infrastructure includes a Globus Toolkit (http://www.globus.
org) based software stack, which provides grid computing
middleware. This middleware facilitates communication
and data exchange among all clusters within TIGRE, max-
imizes load balancing, and permits sharing of resources.
Our software uses it to submit jobs in a uniform way to
multiple remote clusters. In this section, we will describe
how the analysis requests are processed.

Before analysis, all experimental data are edited and
committed to the UltraScan Laboratory Information Man-
agement System (LIMS) database as explained in [12]. The
researcher begins by logging into the web interface,
selecting the experiments to analyze as well as the analysis
method (2DSA or GA). At this stage, all required analysis
parameters are entered via a web form. If MC analysis is
desired, the number of MC iterations is entered as well.
Then, the job is submitted to one of the clusters by the
researcher. Results compatible with UltraScan are e-mailed
to the researcher upon job completion. The user imports
the e-mailed results into the UltraScan software where

they can be visualized in 3D by a C++ graphical user
interface module. There are no special requirements for the
user’s computer. Any PC with access to Internet e-mail and
web browsing that is capable of running UltraScan locally
can process jobs on our high-performance clusters and then
view the results locally. UltraScan versions for all major
operating systems and hardware platforms are available for
free download from our web site (Demeler et al., http://
ultrascan.uthscsa.edu).

The mechanism that enables this apparent simplicity is
shown in Fig. 10. When the user submits a job, the web
server sends the user’s request to us_gridpipe, which is a
named pipe. This is a special type of file that simply holds
written data until they are read. The PERL [13] script
us_gridpipe.pl daemon, a program that is always running,
reads from us_gridpipe and manages the queue for local
MPI jobs and controls startup of TIGRE jobs. Upon receipt
of the researcher’s job request, the us_gridpipe.pl daemon
will first execute us_gridcontrol to collect the experimental
data from the LIMS database in preparation for job
execution. When us_gridcontrol completes, it informs the
us_gridpipe.pl daemon via the named pipe that all of the
experimental data have been extracted from the database
and placed into a file on the disk. The us_gridpipe.pl
daemon then determines from the request if the process
should be executed locally via MPI or submitted to remote
TIGRE resources. For MPI jobs, the job is placed in an
MPI job queue maintained by us_gridpipe.pl. If only a
single request is waiting in the job queue (the one just
added), the MPI job is directly executed on the local cluster
using all processors specified for either a 2DSA or GA
analysis in a machine file. For 2DSA jobs, the number of
grid repetitions is split among the available processors, and
for GA jobs, the number of processors required equals the
number of demes+1. When the MPI job completes, results
are e-mailed to the researcher, and the us_gridpipe.pl
daemon is informed that the job has completed so that it
can remove the job from its MPI job queue and start the
next MPI job if another job is in the queue. For TIGRE
jobs, us_gridpipe.pl places the job request into a list of
TIGRE jobs and begins execution of the PERL script
us_tigre_job.pl, which controls TIGRE job execution.
TIGRE resources are shared, and it is important to select
the number of processors carefully. The authors have
developed a formula to compute the optimal number of
processors to achieve a specific processor utilization [2], and
this computation is performed for TIGRE jobs. Once the
number of processors is known, us_tigre_job.pl sends the
experimental data and user’s web request parameters to
the user-selected cluster and submits the job to the
appropriate queue. The TIGRE job is monitored until
completion. Upon completion, us_tigre_job.pl retrieves the
result data from the target cluster, sends the results e-mail to

144 Colloid Polym Sci (2008) 286:139–148

http://www.mpiforum.org
http://www.mpiforum.org
http://www.hipcat.net/projects/tigre
http://www.hipcat.net
http://www.globus.org
http://www.globus.org
http://ultrascan.uthscsa.edu
http://ultrascan.uthscsa.edu

the researcher, and informs the us_gridpipe.pl daemon that the
TIGRE job is finished. The us_tigre_job.pl script will also
collect all run-time statistics and store them in a database. At
this point, the us_gridpipe.pl removes the TIGRE jobs from its
TIGRE job list, and us_tigre_job.pl exits. The us_gridpipe.pl
daemon also accepts requests to obtain information about its
MPI job queue and TIGRE job list, and this is available for
viewing directly from the web interface. All required
parallelization modules are available for the Linux operating
system, and can be downloaded for free from the UltraScan
web site (http://www.ultrascan.uthscsa.edu).

Methodology

We have adapted the UltraScan software to allow the user
to follow the typical flow of information in the analysis
environment. We now describe how the user will interact
with the remote computing platform and identify the actions
required to improve the data in a step-by-step procedure:

Step 1—LIMS data import The first step after data acqui-
sition is the association of experimental data with related
information and storage of these data in the UltraScan
LIMS. The LIMS is described in detail in [12]. One purpose

of the LIMS is to combine experimental data with other
information important for hydrodynamic corrections, such
that hydrodynamic corrections can be performed on the fly
without the user’s intervention. In addition, users can pro-
vide experimental designs and protocols, project descrip-
tions, gel images, and absorbance profiles to further specify
experimental conditions.

Step 2—editing a binary copy of the data After all data
have been entered into the database, a copy of the data is
retrieved and edited. This will create a binary copy of the
data, which contains all data structures necessary for any
UltraScan analysis method. Moreover, these binary data are
a self-contained description of the entire experiment
suitable for distribution among different compute clusters.

Step 3—setting s-value limits For a velocity experiment, the
first method employed is a preliminary analysis with the
enhanced van Holde–Weischet method [8]. This approach is
used to define a diffusion-corrected G(s) distribution, which
provides the sedimentation coefficient limits of the data.

Step 4—single-pass 2DSA with time-invariant noise cor-
rection and meniscus fitting After committing the binary
copy of the data to the LIMS, the s-value limits are applied

Fig. 10 A flow diagram of
mechanism behind submission
of parallel analysis jobs through
the web interface. Job submis-
sion starts with a request entered
from the web, and it is eventu-
ally passed to us_gridpipe.pl,
which manages the job execu-
tion by requesting us_gridcon-
trol to collect the experimental
data, and then submits the job to
a local MPI queue or a remote
TIGRE queue (see text). Upon
completion, results are emailed

Colloid Polym Sci (2008) 286:139–148 145

http://www.ultrascan.uthscsa.edu

to the 2DSA parameter range and the data can be analyzed
with a high-resolution 2DSA pass. Simultaneously, menis-
cus position and time-invariant noise correction should be
selected. We found a 0.01-cm meniscus range with ten
increments is generally sufficient to find the most accurate
meniscus position. RMSD values from each meniscus
iteration can be fitted to a second-order polynomial, and
the minimum value will correspond to the best meniscus
value. Data analysis results are sent by e-mail to the inves-
tigator in the form of a small e-mail attachment (typically
0.3–20 KB, containing the sedimentation and diffusion
coefficient, and the partial concentration for each solute
determined during analysis, as well as the time and radially
invariant noise vectors), who will import the results into the
UltraScan software and use the Finite Element Data Viewer
within UltraScan to display the results. After inspection of
the data, a utility module in UltraScan is used to subtract
the time-invariant noise vector from the edited data and to
update the meniscus position, if necessary, producing an
improved rendition of the data that is now free of scratches
and other time-invariant noise contributions, and contains
an optimized meniscus position. The improved data are
now recommitted to the LIMS.

Step 5—updating the LIMS with the noise-free data After
subtraction of the time-invariant noise, the edited dataset in
the LIMS can now be replaced with the improved version
and henceforth be used for all additional analysis methods.
Because the time-invariant noise is eliminated from the
dataset, all subsequent analysis methods no longer have to
consider time-invariant noise, which improves calculation
speed significantly, especially for large datasets. This is
especially important for MC analysis methods, which
require many iterations of analysis.

Step 6—2DSA-MC analysis At this point, a 100- to 200-
iteration 2DSA-MC analysis of the data should be per-
formed. This analysis will amplify actual data signals and
minimize the effect of noise contributions in the data. A 3D
plot of this analysis often provides a good qualitative view
of the data.

Step 7—initialization of the GA The results obtained in the
2DSA-MC analysis can be visualized with the Finite
Element Viewer in UltraScan, and the processed distribution
file can be imported into the GA initialization routine. Using
the bucket selection method explained earlier, likely solute
groupings are identified and written to a disk file. This file
is uploaded to the web interface of the GA routine and used
to constrain the GA. Completion of the GA will result in a
parsimonious solute distribution, eliminating all buckets that
are not required for a description of the experimental data.

Step 8—performing the GA-MC analysis The final step in
the analysis will further refine the parsimonious solution by
classifying the contributions of random noise to the
identified parameters. The MC analysis will result in con-
fidence limits for each parameter and provide reliable
statistics for each value.

Step 9—global analysis Additional improvements can be
obtained by combining experimental data from multiple
experiments in step 8. Combined experiments should
include data from different speeds to maximize the signal
from both sedimentation and diffusion coefficients. The
LIMS version of UltraScan permits addition of multiple
experiments in the analysis queue to achieve a truly global
analysis.

Results

To exemplify the importance of our methods, we have
simulated a four-solute system containing time-invariant
and random noise (Solute 1: MW=25 kDa, f/f0=1.2; Solute
2: MW=75 kDa, f/f0=1.6; Solute 3: MW=150 kDa, f/f0=
2.0; Solute 4: MW=300 kDa, f/f0=2.4). This system
exemplifies the general case of a polymer unit that forms
end-to-end associations as could be found in either a
mixture of DNA fragments, a mixture of disordered or
unfolded proteins, or an amyloid or fibril forming macro-
molecular mixture. We analyzed the system using our
parallel method and compared the results to a commonly
used traditional method. We report the results along with
execution times for various numbers of processors in
Tables 1 and 2. From these results, it is clear that significant
improvements are realized by employing our parallel
methods. Furthermore, we demonstrate that the increased
computational demand by our parallel methods can be
effectively addressed by scaling the parallel computing
infrastructure to produce compute times on the same order
of magnitude as traditional methods provide.

Due to varying lengths of the fragments in our simulated
example, the frictional ratios increase with molecular
weight. This produces a heterogeneity both in molecular
weight as well as in shape, which is poorly modeled by
traditional methods such as C(M) [14]. The parallel
approach proposed in our work aims to address the general
case of solving systems that display heterogeneity in
molecular weight and in frictional parameters, for which
the C(M) and C(s) methods are not suitable. If implemented
correctly (see references [2, 3]), the method treats the two-
dimensional problem of shape and molecular weight with
a high-resolution approach that appropriately deals with
experimental noise and eliminates false positives. As a
result, our methods show a significant improvement in

146 Colloid Polym Sci (2008) 286:139–148

RMSD, parsimony in the number of solutes, and in the
determination of the solute’s actual parameters.

In our chosen example, we observe a 24% improvement
in RMSD with our parallel method, and the actual target
values are faithfully reproduced, while the C(M) analysis
not only reports false positive components with incorrect
molecular weights but it also fails to detect the appropriate
partial concentrations and misses entirely the fourth species.
Standard deviations are much narrower for the parallel
method, and molecular weights are well described by the
confidence intervals. The failure of the C(M) approach is
independent of regularization. It is obvious from the report-
ed execution times that a computational price is paid for the
increase in resolution and accuracy, which renders process-
ing of sedimentation velocity data impractical for a single-
processor computer. As we demonstrate here, this limitation
is effectively removed by our parallel implementation. We
have performed a detailed analysis of the scalability of our
approach in [2], which proves that our parallel approach
scales linearly with the number of processors used in the
calculation. Thus, we have shown that, with the appropriate
high-performance computing infrastructure, our approach
reduces computing times to practical levels, which are
comparable to traditional methods.

Conclusion

In this paper, we have described high-performance com-
puting extensions to UltraScan that address problems in the
parameter optimization of AUC experiments where macro-
molecular solutions heterogeneous in mass and shape are
measured. The 2DSA analysis method determines shape
and molecular weight information from AUC sedimentation
velocity experiments using a fixed grid approach. The
parallel application of 2DSA enables extremely fine reso-
lution results and provides a signal amplification to minimize
the effects of stochastic noise. Because 2DSA has been
designed for efficient parallel computation, analysis results
are obtained in acceptable computation time. These runs
typically take between 5 and 20 min on a 44-processor
Opteron cluster. The MC extension to 2DSA will multiply
the time of a single run by the number of MC iterations. The
benefits of MC are that the signal-to-noise ratio is increased
in direct proportion to the number of MC iterations, and thus,
statistically significant confidence intervals can be obtained
for both shape and molecular weight of all solutes in the
mixture.

The GA analysis method also determines shape and
molecular weight information. In contrast to 2DSA, GA

Table 1 Comparison of sedimentation velocity analyses for a simulated mixture of four macromolecular fragments that are heterogeneous in
shape with molecular weights listed in the target column

Solute
RMSD

Target C(M) no reg C(M) reg Parallel method
0.01217 0.01228 0.00987

1 MW 25 16.26 (0.914) 15.42 (3.69) 24.9 (0.007)
36.97 (1.37) 38.40 (7.93)

Conc. 0.25 0.11 (NA) 0.09 (NA) 0.25 (0.0015)
0.14 (NA) 0.22 (NA)

2 MW 75 52.81 (1.35) 72.22 (10.1) 74.9 (0.107)
76.37 (2.35)

Conc. 0.25 0.14 (NA) 0.43 (NA) 0.24 (0.0024)
0.33 (NA)

3 MW 150 123.85 (2.67) 122.46 (6.57) 145.0 (0.051)
Conc. 0.25 0.28 (NA) 0.28 (NA) 0.26 (0.0018)

4 MW 300 – – 304.3 (0.339)
Conc. 0.25 – – 0.25 (0.00078)

Our parallel method is compared to a traditional C(s) analysis [14], without and with 95% regularization. Standard deviations for each parameter
are listed in parentheses. Molecular weights are reported in kDa. Concentrations are reported in optical density units. Standard deviations for the
partial concentration measurements made by SEDFIT (Schuck,http://www.analyticalultracentrifugation.com) were not available from the software.

Table 2 Results along with
execution times for various
numbers of processors

Execution time with different numbers of processors C(M) no reg C(M) reg Parallel method

Execution time 1 processor 2 m 2 m 2,732 m
Execution time 36 processors – – 95 m
Execution time 51 processors – – 66 m
Execution time 128 processors – – 27 m
Execution time 256 processors – – 15 m
Execution time 512 processors – – 9 m

Colloid Polym Sci (2008) 286:139–148 147

http://www.analyticalultracentrifugation.com

uses floating parameter values and can obtain even finer
resolution than are obtained with the fixed grid 2DSA
method. The high number of degrees of freedom present
and the stochastic nature of the GA method make GA a
slower method than 2DSA. Using the 2DSA result to
initialize the GA provides significant speed increase for
the GA because the GA can then focus on searching for
solutions in a bucket-constrained area. A major benefit of
the GA besides the floating parameter space is the ability
of the GA to perform parsimonious regularization. This
addition, based upon Occam’s Razor, finds solutions of
greater simplicity with equivalent RMSD. Use of parsimo-
nious regularization also speeds up the GA, as it pressures
evolution towards smaller population members. GA is still
generally slower that 2DSA, but the quality of result is
unsurpassed. The MC method also benefits the GA method
by increasing the signal-to-noise ratio and providing statis-
tical confidence intervals.

We have documented in “Implementation” an overview
of the significant work we have done to allow simple web
access to our advanced analysis methods. Through the step-
by-step methodology described in “Methodology”, the
researcher can obtain the highest quality results combining
the methods of 2DSA, GA, and MC to determine statis-
tically confident shape and molecular weight distributions
from sedimentation velocity experiments. All methods pre-
sented here are programmed in UltraScan, which can be
downloaded freely from http://www.ultrascan.uthscsa.edu.
A web portal suitable for implementation on a local Linux
cluster is available for download from the same web site.

Acknowledgment We would like to thank Josh Wilson, Yu Ning,
and Bruce Dubbs for contributions to the web interface code. This
research has been supported by NSF Grant DBI-9974819, NIH Grant
1 R01 RR022200-01A1, and the San Antonio Life Science Institute
with Grant #10001642, all to B.D. The parallel calculations were
performed on the Linux cluster at the Bioinformatics Core Facility at
the University of Texas Health Science Center and on the Lonestar

cluster at TACC through NSF Teragrid Allocation # TG-MCB070038.
We gratefully acknowledge support by the Robert J. Kleberg Jr. and
Helen C. Kleberg Foundation.

References

1. Moore GE (1965) Cramming more components onto integrated
circuits. Electronics 38(8) (April)

2. Brookes EH, Boppana RV, Demeler B (2006) Computing large
sparse multivariate optimization problems with an application in
biophysics. In: SuperComputing 2006 Conference Proceedings.
ACM, IEEE, November

3. Brookes EH, Demeler B (2006) Genetic algorithm optimization
for obtaining accurate molecular weight distributions for sedi-
mentation velocity experiments. In: Analytical Ultracentrifugation
VIII. Prog Colloid & Polym Sci 131:78–82 (Springer)

4. Grama A, Gupta A, Karypis G, Kumar V (2003) Introduction to
parallel computing, 2nd edn. Addison-Wesley, Boston

5. Hall MW, Anderson JM, Amarasinghe SP, Murphy BR, Liao S-W,
Bugnion E, Lam MS (1996) Maximizing multiprocessor perfor-
mance with the SUIF compiler. IEEE Computer, December

6. LammO (1929) Die Differentialgleichung der Ultrazentrifugierung.
In: Ark Mat Astrol Fys 21B:1–4

7. Lawson CL, Hanson RJ (1974) Solving least squares problems.
Prentice Hall, New Jersey

8. Demeler B, van Holde KE (2004) Sedimentation velocity analysis
of highly heterogeneous systems. In: Anal Biochem 335:279–288

9. Holland JH (1992) Adaptation in natural and artificial systems,
2nd edn. MIT, Cambridge, MA

10. Brookes E, Demeler B (2007) Parsimonious regularization using
genetic algorithms applied to the analysis of analytical ultracen-
trifugation experiments. In: Proceedings of Genetic and Evolution-
ary Computation Conference 2007 (in press)

11. Demeler B, Brookes E (2007) Monte Carlo analysis of sedimen-
tation experiments. Prog Colloid & Polym Sci (in press) DOI
10.1007/s00396-007-1699-4

12. Demeler B (2005) UltraScan: a comprehensive data analysis soft-
ware package for analytical ultracentrifugation experiments. Royal
Society of Chemistry, UK

13. Wall L, Christiansen T, Orwant J (2000) Programming PERL, 3rd
edn. O’Reilly and Associates, Sebastopol, California

14. Schuck P (2000) Size-distribution analysis of macromolecules by
sedimentation velocity ultracentrifugation and Lamm equation
modeling. Biophys J 78(3):1606–1619

148 Colloid Polym Sci (2008) 286:139–148

http://www.ultrascan.uthscsa.edu
http://dx.doi.org/10.1007/s00396-007-1699-4

	Parallel computational techniques for the analysis of sedimentation velocity experiments in UltraScan
	Abstract
	Introduction
	Parallel processing background
	Analysis methods
	Implementation
	Methodology
	Results
	Conclusion
	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (None)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org?)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /ENU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200036002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006400690067006900740061006c0020007000720069006e00740069006e006700200061006e00640020006f006e006c0069006e0065002000750073006100670065002e000d0028006300290020003200300030003400200053007000720069006e00670065007200200061006e006400200049006d007000720065007300730065006400200047006d00620048>
 /DEU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200036002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006400690067006900740061006c0020007000720069006e00740069006e006700200061006e00640020006f006e006c0069006e0065002000750073006100670065002e000d0028006300290020003200300030003400200053007000720069006e006700650072002d005600650072006c0061006700200047006d0062004800200061006e006400200049006d007000720065007300730065006400200047006d00620048000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f006100640065006400200061007400200068007400740070003a002f002f00700072006f00640075006300740069006f006e002e0073007000720069006e006700650072002d00730062006d002e0063006f006d000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c0020003600200061006e0064002000500069007400530074006f007000200053006500720076006500720020003300200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [2834.646 2834.646]
>> setpagedevice

