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Abstract

We  present  a  novel  divide  and  conquer  method  for
parallelizing a large scale multivariate linear optimization
problem,  which  is  commonly  solved  using  a  sequential
algorithm with the entire parameter space as the input.
The  optimization  solves  a  large  parameter  estimation
problem where the result is sparse in the parameters.  By
partitioning  the  parameters  and  the  associated
computations,  our  technique  overcomes  memory
constraints  when  used  in  the  context  of  a  single
workstation and achieves high processor utilization when
large workstation clusters are used.  We implemented this
technique  in  a  widely  used  software  package  for  the
analysis of a biophysics problem, which is representative
for a large class of problems in the physical sciences.  We
evaluate  the performance of  the  proposed method on  a
512-processor  cluster and offer an analytical  model  for
predicting the performance of the algorithm.

1 Introduction
Spectroscopic applications from fields such as astronomy,
physics, and biochemistry involve experiments which often
generate  large  amounts  of  data.   Analysis  of  such  data
typically  involves  fitting  the  experimental  data  to  a
parameterized  model.   A  crucial  and  time-consuming
computational task in these  analyzes is the determination
of a subset of  parameters from a much larger parameter
space  which best  model  the  experimental  data.   This  is
achieved  using  standard  optimization  techniques.   One
such  approach  fits  experimental  data  to  a  linear
combination of vector representations of basis functions on
the parameter space.  Our motivating application, chosen
from  the  field  of  biophysics,  is  analytical
ultracentrifugation (AUC) [1, 2,  3].   AUC is a powerful
technique  for  determining  hydrodynamic  properties  of

biological  macromolecules  and  synthetic  polymers  in
solution, and one where very large datasets are frequently
encountered.  Hydrodynamic parameters determined from
such experiments allow the investigator to identify shape,
molecular weight, and partial concentration of each solute
in the mixture. 

The computational task of analyzing the experimental data
(denoted as data henceforth) to build the best model can be
organized  into  four  phases:  selecting  the  appropriate
parameter search space, evaluating the basis functions on
the  parameters,  eliminating  systematic  noise,  and
selection/identification  of  the  parameters  whose  basis
functions best fit the data.  In our case, each basis function
is  evaluated  using  a  finite  element  solution  of  a
partial  differential  equation  (PDE).   High-performance
computational  techniques  for  this  final  phase  of  the
analysis are well-known and are not the focus of this paper.
The  resolution  of  the  model  is  often  dictated  by  time
constraints and memory limitations of a high-performance
workstation.  In this paper, we introduce a new method for
optimization  (finding the  best  model  of  the data)  which
addresses memory limitations, provides serial speedup and
parallelizes with negligible  communication overhead and
no excess computation.

The contributions of the paper are both in the development
of efficient computational techniques and their application
to the AUC problem in biophysics.   First,  we present  a
divide  and  conquer  method  to  partition  the  parameter
space  and  the  associated  computations.   Our  method
speeds up the computation for both sequential and parallel
computing  approaches  and  improves  resolution  by
overcoming memory constraints,  allowing larger  number
of  parameters  to  be  searched.   We  also  develop  an
analytical  model  to predict  the performance and optimal
number  of  processors  to  use  for  a  given  cluster  and
problem set.   Another  contribution  of  the  paper  is  the
extensive evaluation of the proposed techniques using data
from a large biophysics experiment which is analyzed on
high  performance  cluster  computers.   Without  our
techniques, the largest number of parameters that could be
searched  using  sequential  techniques  on  a  high-end
workstation  (Opteron with  4  gigabytes  of  RAM)  was
approximately 6.4 * 103 parameters.  Using our techniques,
we  have  been  able  to  increase  the  size  to  1.5  *  106

parameters using a cluster of 512 nodes without increase in
execution time.  This increased resolution provides higher
accuracy  and  higher  information  content  for  a  given
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experiment.

This paper is organized as follows:  After the background
material on AUC, we describe our method in the framework
of set functions on the parameter space, using both serial
and parallel approaches.  We partition the parameter space,
apply the function to  each set  in the partition,  union the
results  and  apply  the  function  again.   This  approach  is
generally not exactly equivalent to applying the function to
the full unpartitioned parameter space, but does allow us to
analyze much larger problems.  We introduce an iterative
variant which is empirically exact for some set functions.
Next,  we  give  an  analytical  model  of  our  method  for
performance  prediction.   Finally,  we  experimentally
validate our performance prediction and describe the results
for  a  large biophysics  experiment  on a 512 node cluster
made available to us through TeraGrid.

2 Background
Many of todays' biomedical research projects studying the
molecular basis for cancer and other diseases focus on the
understanding  of  dynamic  interactions  among  molecules
implicated in the disease process.  Sedimentation velocity
(SV),  one  of  several  AUC  techniques,  offers  a  high-
resolution  approach to  study such interactions.   SV is  a
rigorous hydrodynamic technique and essential tool for the
characterization  of  solution  properties  of  biological  and
synthetic  macromolecules,  applicable  to  molecules  with
mass of just a few thousand Daltons to systems as large as
whole  virus  particles.   Analysis  of  SV  data  provides
hydrodynamic  information  such  as  sedimentation  and
diffusion  coefficients  which  can  be  used  to  determine
molecular  weight  and  shape,  two  important  metrics  for
biomedical  research.   In  SV  experiments,  a  solution
containing a macromolecular solute or mixture of solutes is
sedimented  in  a  centrifugal  force  field  and  the  transport
processes  for  each  molecule  are  observed  over  time  in
order  to  measure  sedimentation  and  diffusion  rates.
Experimental data are collected 200-1000 times during the
sedimentation process in the form of concentration profiles
showing the sedimenting boundaries along the radius of the
ultracentrifugation cell.  Depending on the optical detector,
a total of 500-2000 radial points may be collected for each
time point.   The  concentration profiles  change over time
due to the two transport  processes acting on each solute,
sedimentation  and  diffusion.   For  the  sector  shaped
geometry of the ultracentrifugation cell, these processes are
modeled by the  Lamm equation, a second order PDE [4]
parameterized  by  the  sedimentation  and  diffusion
coefficients.  The Lamm equation is efficiently computed
by  an  adaptive  space-time  finite  element  method
(ASTFEM)  proposed  by  Cao and  Demeler [5].   Using
appropriate  initialization  procedures  (described  in  [6]),  a
grid is placed on the 2 dimensional parameter space, where
each  grid  point  defines  the  parameters  for  one  basis
function  of  the  model.   After  finding  the  best  fit  linear
combination of basis functions to the data, the amplitude of
each term identifies the partial concentration of each solute.

Because a negative concentration does not make physical
sense, it is critical to constrain the value of the amplitude to
positive values only, or zero  if  the solute  is  not  present.
Our approach to fit SV data to the parameterized models
uses the NNLS algorithm [7] to determine the amplitudes.
This approach guarantees positively constrained amplitudes
and allows us to determine the partial concentration of each
solute.  In practice this method returns excellent results, but
we  often  needed to  analyze  systems  that  overflowed
available memory, prompting the improvements described
in this work.

3 Divide and Conquer Techniques for
Optimization
In this section, we provide a divide and conquer approach
to  facilitate  efficient  implementation  of  optimization  on
sequential as well as large parallel computers.  We will also
provide an analytical model to predict the execution time
complexity of the proposed techniques.  We have extensive
experience with the NNLS algorithm used in the analysis of
AUC data.   Therefore,  we use  NNLS as  an  example  to
illustrate  our  model and also to validate it  against  actual
computation  times  of  NNLS on  clusters.   However,  our
analytical  model  and  parallelization  techniques  may  be
applied to other optimization problems.  Many optimization
problems  where  the  majority  of  the  parameters  do  not
contribute to the model could utilize our  method.  Noise
handling and data stabilization techniques such as Tikhonov
regularization  using  NNLS  or  TGSVD[8]  can  also  be
incorporated.  In AUC, the method of time invariant noise
removal by removing radial averages [9] has been handled
successfully by our method.

To  describe  our  method,  we  introduce  the  following
notation.  Let  U be the set of all possible parameters.  In
AUC, each parameter is a pair of real numbers, so in this
case U is ℜ×ℜ.  Let R, S and RT be nonempty subsets of U.
S denotes  the search space:  the set  of  parameters  to  our
basis functions,  which are checked for fitness against the
experimental data by the function f.  RT=f(U)  denotes our
target set, the unknown set of parameters that best model
the experimental data.   In AUC,  RT   would be the set  of
parameters  that  model  the  actual solutes.   R=f(S) is  the
result  set  and  is  dependent  on  the  choice  of  S and  the
optimization technique used.  A perfect solution is achieved
when  R =  RT.   This is  feasible only when  RT  ⊆  S,  which
requires a prescient initialization of S.  Therefore,  R is the
best possible solution for a given  S.   Additional notation
will be introduced as needed.

3.1 Divide and Conquer Method
We may need to search a large number of parameters (we
have  used  |S|  =  103 to  106  )  to  find  R.  Therefore,  the
computational and memory requirements often exceed the
capacities  of  even  high-end  workstations.  We  develop
divide  and conquer  techniques for  NNLS calculations  to
overcome  the  memory  limitations  of  workstations  in



sequential  computing  and  to  facilitate  efficient
parallelization of the computational task.  We partition  S
into disjoint sets Si, apply f to each Si , union the results and
apply f to the union.  This procedure is described in Text 1.
Let  RD denote the result set obtained with the divide and
conquer approach.  Ideally,  R and  RD should be the same,
but in practice, they usually differ.  If the size of the final
union, |Rint| in step 5 of Text 1, is too large to apply f, then
the divide and conquer method can be applied recursively
by partitioning Rint.

The divide and conquer method improves execution time
on both sequential and parallel computers.  If a single high-
performance  workstation is  used,  the divide  and conquer
method can be used to overcome the constraint on the size
of  S due to main memory;  the user can choose arbitrarily
large  S as  desired  for  accurate  modeling  at  the  cost  of
increased execution time as long as each application of f to
Si can  fit  in  the  available  memory.   We  show  in  the
analytical  modeling  section  that,  for  a  given  S,  the
computational  time  is  also  reduced  (dramatically  for
computationally  expensive  optimization  problems).   If  a
large  workstation  cluster  is  used  to  perform  the
optimization, then the most computationally intensive step
4 in Text 1 can be done in parallel, yielding high processor
utilization.

3.2 Improving the Accuracy of Results
Arbitrary application of the divide and conquer approach to
the optimization problem can lead to unsatisfactory results
since f does not 'see' all the parameters of S at once.  Based
on our  analysis  of  AUC data,  we propose  the  following
heuristics to ensure that the quality of the solution with the
divide  and  conquer  approach,  RD,  is  identical  or  nearly
identical  to  that  of  the original  method,  R, in  which  f is
applied to the entire S. 

● Partition  S carefully:  When  partitioning  S into
disjoint sets, some care must be taken to achieve the
best results. Each set should cover the space covered
by  S,  though sparsely. In other words, the range and
density of the each set should be similar. The intuition
is that each application of  f is trying to find the best
combination  of  basis  functions  to  fit  the  data.
Therefore, if f does not get a diverse set of parameters
to work with, then it  will have a  hard time selecting

appropriate  basis  functions.  We  experimented  with
different  partitioning  strategies  and  found  that  the
suggested approach yields RD that is nearly identical to
R.  We now describe the method we use to partition S.
Given each parameter in S is of d dimensions, we must
first find bounded intervals for each dimension of the
parameter.   This  requires  some knowledge about the
possible range of the parameters,  usually based upon
physical limits.  For our AUC example, this problem
has  been  solved  previously  [6].   Given  some target
number of parameters, we can place a  d  dimensional
grid  on  S with  each  point  determining  a  parameter.
Then, a subgrid can be defined that consists of every i-
th point of the original grid in each dimension.  This
subgrid defines one of the sets Si of the partition of S.
The subgrid can be moved over the original  grid,  in
each dimension, with each move defining a new set  Si

until  every  point  in  the  original  grid  is  included  in
some set.

● Apply  f on  the  results  obtained  iteratively:  After
obtaining the final result for the basic method (at the
end  of  step  5  in  Text  1),  all  parameters  in  RD are
unioned back into each Si and the procedure is repeated
until  the  results  no  longer  vary.   We  found  in  our
empirical  analysis  this  iterative  variant  is  in  exact
correspondence to  R when f consists of evaluating the
basis functions independently and performing NNLS.
However, when f has additional processing steps (e.g.
noise removal), the iterative results may not converge
to a fixed parameter set.  In such cases, the iterative
procedure  can still  be  applied,  but  some termination
criteria  based  upon  goodness-of-fit  should  be
implemented.   Of  course,  when early  termination  is
applied this way, the result is unlikely to be exact.  The
iterative  phase  adds  to  the  execution  time  and,
therefore, should be applied only when necessary.   In
AUC  without  noise  removal,  we  have  seen
convergence (RD→R) in 3 to 7 iterations.  For systems
with noise removal, we have achieved our best fit (no
further decrease in residual) in 5 to 10 iterations. 

● Use  larger  S:  Instead  of  applying  the  iterative
technique  above,  the  initial  S may  be  increased  to
obtain RD that is close to R. For the NNLS optimization
technique,  we  observed  that  roughly  doubling  the
number of parameters in the initial  S yields the same
fitness  as  would  be  obtained  with  the  original
sequential  approach.  This  would  correspond  with  a
grid of increased point density, which of course, comes
with a  performance penalty.   For  example,  in AUC,
instead  of  using  a  2  dimensional  grid  of u∗v
parameters,  one  would  use  a  grid  of  approximately
2u∗2 v parameters. 

4 Analytical Model for Performance Prediction
In this section, we develop an analytical model to predict
the execution time complexity,  speedup over the original
sequential method, efficiency of parallelization and optimal
partitioning of S for a given computer cluster.

1.    Select search parameters S
2.    Partition S into k disjoint sets Si

3.    for i = 1 to k
4.           Apply f to Si and union the results into a set Rint

5.    Apply f to Rint giving the final set of results RD

Text  1:  A  divide  and  conquer  method  to  speedup
optimization  techniques.   The  computation  resulting
from an application of   f   to an  Si is called the basic
computation module. 



Let n=|S|, the number of parameters in S. The optimization
problem of  finding  R can  be  described  as  a  function  f
returning the subset of parameters of the input set which
contribute to the best fit model. Let P be the power set of
U, i.e. the set of all subsets of U.  Then f can be defined as a
function from  P to  P,  which simply means that  f takes a
subset of U as input and returns some subset of U. Actually,
f will always return a subset of the input set, since these are
the only parameters that  f knows about.   The work done
within f consists of evaluating basis functions, one for each
parameter, and finding the best fit of the basis functions to
the data.  If the basis functions are built independently (i.e.,
one basis function for each parameter, which is the case in
AUC when we assume non-interacting molecules), the basis
function  evaluation  phase  has  time  complexity  O(n).
Finding the best  fit  in our case uses NNLS, for  which a
general time complexity formula is unknown, although an
unlikely worst-case complexity has been given [10].   We
have used  exponential regression to  approximate a  time
complexity of  O(n1.3).   In  practice,  the experimental  data
can be quite noisy.  For example, in AUC, a fingerprint on
the cell adds time-invariant noise to the data.  One method
we  use  to  eliminate  time  invariant  noise  consists  of
removing radial  averages from all  basis  functions,  which
has a time complexity of O(n2) [9].  Our divide and conquer
approach can also be applied in such instances.  Therefore,
we model  the  execution  time  for  the  original  sequential
technique in which  f  is applied to the entire set S as 

TORIGINAL = O(na), a > 1 (1)

To  find  RD,  we  assume  that  we  start  with  |S|  >>  |R|.
Partition  S  into  k disjoint sets  Si  , i  ∈ {1,2,...,k}.   Assume
they all have the same cardinality,  m = |Si|,  therefore, k =
n/m.  If k=1 we have simply repeated the initial problem of
computing  f(S). Therefore, we only consider the instances
where  1<k<=n.   In  general,  the  number  of  parameters
returned for each application of f on each Si is dependent on
k, f, S and R.  Let x = E(|f(Si)|)/m, the expected fraction of
the number of parameters returned.  When x is not known
statistically, one can roughly assume

x = 1 for m<|R|  and  x=|R|/m for m>=|R| (2)  

This  assumption  is  based  on  our  observations  of  f for
NNLS.  When  f is  given  fewer  parameters  than  |R|,  f
generally returns all the parameters, giving a probability of
1.   When  f is  given  more  points  than  |R|,  it returns
approximately |R| points.   However, |R| is often not known,
therefore a statistical determination of  x is recommended.
For an a priori estimate, one can select random samples of
S  of size  m, apply  f,   and subsequently estimate  x.   This
procedure  would  require  some  additional  preparatory
computation  to  achieve  maximum speedup for  the  given
data.  In  Table 1 we compute an average value of  x  from
sample runs with data of different sizes and compare this
with equation (2).

Now, we can estimate the total execution time of applying f
to each set Si and applying f to the union of the results. If a
single computer is used, the serial execution time is:

TSEQ = O(k ma + (x n)a) = O(n ma-1+ (x n)a) (3)

where the first term is due to the application of f to each Si

and the second term is due to the application of f to the final
union.  Each application of f to Si can be easily performed
in parallel. If p processors are available, the execution time
is:

TPARALLEL = O( k / p ma +(x n)a), for p > 1 (4)

For efficient parallel computing, the time spent the the first
term should dominate the time spent on the second term,
which must run serially.

Of particular importance is finding the optimum value of m
which gives the minimum execution time, for fixed n, a and
x.  In general, this seems to be a difficult problem, since x is
dependent  on  k,  f,  S and  R.    First,  we determine  x for
various m.  Then, using a fixed constant of proportionality
to remove the big-O  (assuming the data is fixed), we can
divide  equation  equation  (1)  by  equation  (3)  or  (4)  to
compute the  best  possible  serial  or  parallel  speedup.   In
Table 2 we see the maximum theoretical  serial  speedups
that are achievable for a given x and a, after fixing n=2048.
It is interesting to note that the optimal value of  m for the
best  speedup  is  not  very dependent on  a,  though  a does
primarily  determine  maximum  serial  speedups  that  are
achievable.

4.1 Modeling Recursive Use of Divide and
Conquer in the Combining Phase

Another issue that must be addressed is the size of the final
union, |∪ i (f(Si))| which may exceed the available memory
and practical execution time limits. This can be alleviated
by further partitioning the results.  Let S(1) = ∪ i (f(Si)), then
we  can repeat  the  procedure  for  S by  substituting  S(1),
keeping m constant from  S to  S(1),  (note that  m will most
likely not divide  n(1) = |S(1)|), so  k(1) =  n(1) / m.  We call
each  recursive  application  of  the  divide  and  conquer
technique a stage, so S(1) is the first stage of recursion (the
initial procedure for S is the zeroth stage).  Continuing on,
we may have additional stages S(2), S(3), ..., until we have a
stage with  |S(r)|  <= m.   To achieve this, we have to take
some care choosing m, since if m < |R|, we may never have
|S(r)| <= m.  This condition can be checked and m increased
appropriately,  alternatively,  m can  be  increased  at  each
stage  up  to  some predefined  limit  based  upon  available
memory and maximum allowed execution time.  Note that x
will  likely  vary  somewhat  from  S to  S(1),  S(2),  etc.  In
practice,  the  average  x  for  the  zeroth  stage  is  a  good
predictor of  x  on subsequent stages.  We can assume x is
constant at each stage and x < 1. (If x = 1, then there will



be no decrease in the problem size and the computation will
not terminate).  First, we analyze the serial multi-stage case.
For the first stage, n(1) = xn. For stage j, n(j) = xn(j-1) = xjn,
and the number of basic computation modules k(j) = n(j)/m =
x jk. We will have a stage with only one set (a final result
union) when k <= x-r for some r calculated as follows:

r = log k / -log x (5)

Therefore, the total number of times the basic computation
performed is 

∑ (j = 0..r) xj k  ≅  k * (1 - xr+1) / (1 - x ) ≅  k/(1-x),  (6)

since either x<<1 or  r is large, and (1-xr+1) ≅ 1.  Since the
execution  time  complexity  of  each  basic  computation
module  is  O(ma),  the  overall  serial  execution  time
complexity is approximately

TMULTISTAGE-SEQ   = O((k/(1-x)) ma) (7)

4.2 Efficiency of Parallel Processing

The organization of the parallel implementation proceeds as
follows.  We begin at the zeroth stage with a master process
partitioning the parameters  S.  These sets of the partition
are distributed to available workers.  Each worker applies f
to  their  set  of  the  partition,  performing  the  basic

computational  module.   When  the  worker  is  done,  the
subset  of  their  set  which contributes  to  the  solution  are
returned to the master. When sufficient zeroth stage results
are  available (a  union of  parameters  with cardinality not
greater than m), the master can begin distributing first stage
jobs to  the  workers.   This  procedure  continues  until  the
final stage is complete.   For the iterative variant, the entire
process  will  repeat  multiple  times.   In  this  analysis,  we
consider the overheads and efficiency of a single iteration
of our method.

The inefficiencies in parallel computing can be due to three
sources:  (a)  interprocess  communication  that  cannot  be
masked  by  productive  computations,  (b)  excess
computations, often used to reduce communication among
processes,  and  (c)  processor  idling. For the problems we
investigated,  the  interprocess  communication  involved
consists  of  sending out and receiving sets  of  parameters,
which are  quite  small  and  insignificant  compared  to  the
time spent by each worker to perform the basic computation
module.   Additionally,  the  initial  data  set  must  be
distributed to all the processors once.  It may be that for
some applications,  the  basis  function evaluation  phase  is
expensive, and some caching of vector representations may
be  of  benefit.   There  is  no  excess  computation  in  the
parallel algorithm, as it is identical to the serial divide and
conquer algorithm with the addition of the communication
of  parameters.   The  major  source  of  inefficiency in  our

m
Relative data size

1 2 4 8
Average |R|=10

1 1.0000 1.0000 1.0000 N/A 1.0000 1.0000

2 0.7290 0.8320 0.7803 0.7832 0.7811 1.0000

4 0.6562 0.7744 0.7759 0.7730 0.7449 1.0000

8 0.4712 0.6602 0.6738 0.6685 0.6184 1.0000

16 0.2554 0.5601 0.5405 0.5366 0.4731 0.6250

32 0.1309 0.4697 0.4131 0.3989 0.3531 0.3125

64 0.0654 0.2822 0.2285 0.2129 0.1973 0.1563

128 0.0522 0.2017 0.1338 0.1299 0.1294 0.0781

256 0.0381 0.0967 0.0854 0.0938 0.0785 0.0391

512 0.0264 0.0483 0.0503 0.0566 0.0454 0.0195

1024 0.0146 0.0278 0.0269 0.0293 0.0247 0.0097

Table 1: The observed values of x for data of various sizes.  The N/A entry is because this system was too large to compute
the final application of  f  for m=1 on a single machine.  All the data were taken from an AUC experiment of an identical
mixture.  Larger data sets were obtained by combining results from multiple experiments of various centrifugal rotational
speeds.  Other mixtures will result in different average x.  The final column is an estimate of x for |R|=10, a number we
believed might be representative of our data.  More general study of the relationship of x to the data would likely lead to
better estimators.



parallel method is processor idling in the combining stage.
The remainder of the section discusses this issue in depth.

The execution time is simply the number of stages times the
execution  time  of  a  stage,  which  is  O(ma),  assuming
sufficient  number  of  processors  are  available.  So  the
minimum execution time in the parallel case with sufficient
processors is

TMULTISTAGE-PARALLEL =  O(r ma) (8)

If we have p processors, then the execution time of stage j
is 

O( k(j) / p ma) = O( xj k / pma) (9)

Summing over all stages

∑ (j = 0..r) xj k / p ma  ≅  [r+( k /p)/(1-x)]  ma

Assuming one stage must complete before the next stage
can  begin,  the  execution  time  in  the  parallel  case  with
limited processors is

TMULTISTAGE-PARALLEL =  O([r+( k /p)/(1-x)] ma) (10)
Since (1-x) is Θ(1) values of m >> |R| it can be omitted from
equations (7) & (10).  In practice, once sufficient results are

available from one stage, the next stage processing can be
performed  simultaneously,   thus  increasing  processor
utilization and  lowering the value of  (10).   Equation (9)
provides  insight  into  processor  utilization.   Note  k(r)

decreases at each stage until the final stage when k(r) =  1.
Therefore, at the final stages, processors become idle, until
the final stage is performed on one processor.  This places a
limit on overall processor utilization.

The  overall  speedup  and  efficiency can  be  estimated  as
follows.  Let  l be the number of  stages up to which the
number  of  basic  computation  modules  is  at  least  p.  So
k(l) ≥ p; and 

l = log(k/p)/ -log(x).  

Using the total computation in units of basic computation
modules  given  in  equation  (6)  and  the  execution  times
given in Table 3 for various stages of parallel computation,
the speedup,  γ, and processor utilization,  η, are calculated
as follows:

   γ = [k/(1-x)] / [(k/p)/(1-x) + r-l] (11)
η = [(k/p)/(1-x)] / [(k/p)/(1-x) + r-l] (12)

To maximize processor utilization, it is best to set k to some

|R|
a

1.1 1.3 1.5 2 2.5 3 3.5

2 1.41
32

3.33
16

7.54
16

51.20
32

341.33
32

2048.00
32

10922.67
32

4 1.33
64

2.82
32

5.91
32

32.00
32

153.83
64

819.20
64

4279.56
64

8 1.24
128

2.38
64

4.53
64

21.33
64

90.51
64

341.33
64

1158.52
64

16 1.16
128

1.99
128

3.40
128

12.80
128

47.28
128

170.67
128

599.85
128

32 1.09
256

1.67
128

2.67
128

8.00
128

21.33
128

56.89
256

160.91
256

64 1.03
512

1.43
256

2.09
256

5.33
256

13.25
256

32.00
256

74.98
256

128 0.97
1024

1.21
512

1.60
512

3.20
512

6.40
512

12.80
512

25.60
512

Data from
Table 1

1.16
128

2.11
64

3.78
64

14.25
64

46.19
128

164.66
128

569.48
128

Table  2: Maximum theoretical serial speedups and the associated optimal value of m (below each speedup) for various
values of a. The comparison is between equations (1) and (3) for n=2048.  For the last row, x is obtained from Table 1.
For the other rows, |R| is given and x is computed with equation (2).  Note the speedups increase with increasing a and the
optimal  values  of  m remain  relatively  unaffected  by  a.   Also,  the  optimal  values  of  m increase  monotonically  with
increasing |R|.



multiple of the number of processors.  For the application
below,  we  used  a  multiplier  of  30.  This  means  each
processor will be busy with 30 zeroth stage applications of
f,  before it is required to apply  f to any further stages. If
there  are  4  additional  stages,  then  the  global  system
utilization  will  be  approximately 90%.  In  principle,  one
could target  arbitrarily high global  system utilizations by
increasing the multiplier of p to determine k. 

To further elucidate, say that an application of f on a set of
size m takes 1 minute.  If each processor must compute 30
applications of  f ,  then this will take 30 minutes, with all
processors fully occupied.  If there are 4 additional stages
and x = .1, then the first stage will require 3 applications of
f by each processor, for an additional 3 minutes, again with
full processor  utilization,  then the second stage will then
only keep 30% of the processors busy for  1  minute,  the
third stage, 3% for 1 minute and the final stage will keep 1
processor busy for 1 minute.  So during approximately 33.3
minutes of a 36 minute calculation, all processors are busy,
giving a  utilization of 92.5%.  In this example,  r=4, l=1,
x=0.1, and k/p=30;  plugging these values in equation (12)
gives  η  =  91.7%.   The  discrepancy  is  due  to  the
approximation made in the calculation of total time spent in
the first (l+1) stages.  

We  assumed  that  number  of  parameters  given  to  each
computation module is the same.  This is true for the first
stage  where  each  Si contains  m  parameters.   However,
subsequent stages are given parameters of cardinality less
than or equal to m.  Therefore, the execution time of those
modules will be less.  This can improve the efficiency over
the formula given in equation (12). 

5 Evaluation of Analytical Model
In  this  section,  we  describe  the  implementation  of  the
proposed divide and conquer method for NNLS and noise
removal  algorithms  in  a  production  software  called
UltraScan, used by researchers worldwide. Using the actual
data  obtained  in  AUC experiments  and  analyzes  of  the
same in the software package, we validate the accuracy of
the proposed performance prediction model.

For our observational results we analyzed a simulated SV
experiment.  Our  method  has  been  implemented  in  the
UltraScan software [11] since 2005 and is heavily used in
the AUC community.  The parallelization of this method
was implemented in 2006 and announced at the Analytical
Ultracentrifugation  Workshop  in  San  Antonio  [12]  and
demonstrated  at  the  recent  AUC  conference  [13].   Job
submission to the parallel version is made available through
a convenient web interface [14]. The UltraScan software is
written in C++, and parallel versions use MPI [15,16]. We
implemented the allocation of basic computation modules
to  various  processors  using  a  master-worker  model.   A
master  process  keeps  track  of  the  basic  computation
modules. Each free worker processes queries and receives a
few computation modules; upon completing the execution,
it returns the result parameter set to the master and receives
additional  computational  modules.   It  is  noteworthy that
when  the  multistage  method  is  used,  all  the  basic
computation modules in one stage need not be finished to
start  the  computations  in  the  next  stage.   This  helps
maximize processor utilization.

All  observed  execution  times  are  from  running  an
instrumented  version  of  UltraScan,  which  offers  the
capability  to  globally  analyze  multiple  experiments
simultaneously [17]. The f in UltraScan consists of building
basis  functions  for  each  parameter,  optionally processing
for time-invariant noise,  and running NNLS.  Our results
reflect  simulations without time-invariant noise.  We have
observed corresponding results for experiments containing
time-invariant noise (data not shown). UltraScan partitions
S,  a 2  dimensional parameter  space bounded by physical
constraints,  by starting with a  regularly spaced grid over
this space.  This grid serves as the initial set of the partition.
The next set is created by moving the grid by a fraction of
the grid spacing in each dimension.  Each movement of the

Relative data size

1 2 4

TORIGINAL 46.61 301.67 425.42

Table 4: TORIGINAL computed for different data sizes.  The
data sets are the same as those used in Table 1, we kept
n=2048.  We believe the large TORIGINAL between the data
size 1 and 2 is due to caching.  Note the increase from 2
to 4 is not as significant.

Stage 
j=0, ..., l

Stage j=
l+1, ..., r

Processors
used  p  < p and

≥ p xj-l

Time spent 
in a stage

(in units of
basic module
computation

times)

k xj/p 1

Total time
spent

∑ (j = 0..l) xr k/ p 
 =(k/p) *(1-xl+1)/(1-x)

≅ (k/p) *1/(1-x)
(r-l)

Table  3:  The   time  spent  in  various  stages  of  the
multistage parallel method.



grid creates an additional set of the partition.  This way, S
and the partition of  S  are built up from an initial partition
set which is moved around to eventually cover the entire
parameter space  S.   This method limits  k to be a perfect
square.   We  report  here  results  from  runs  performed
without the iterative method.  
 
We conducted two sets of computer runs. The first set is
used to validate the performance prediction model for the
serial  and  parallel  single  stage  case.   The  second  set  of
computer runs is  used to demonstrate the highly efficient
parallel execution of the multistage optimization algorithm
in the UltraScan software.

In  our  first  experiment  we  compare  the  theoretical
predictions  of  equations  (1)  and  (3)  with  the  observed
execution times. In this case AUC software was run on a
cluster  of  40  Opterons with  2  gigabytes  of  RAM  per
processor running Linux and located at the University of
Texas  Health  Science  Center  at  San  Antonio.  The
motivation  for  this  experiment  was  to  compare  our
theoretical predictions with real cases of varying data sizes.
For  both  the  theoretical  and  observed  cases  we  fixed
n=2048.  We have empirical data giving an approximate a
of 1.3.  To determine our speedup, we computed  TORIGINAL

for each data set as reported in Table 4.

Given the values of  x from Table 1, we can now compare
the  theoretical  predictions  with  the  observations.   These
results are summarized in  Table 6 for the serial case and
Table 5 for the parallel case.  We ran tests for varying  m
and found that  the optimum theoretical  m coincided with

m

Relative data size

1 2 4

x Predicted Observed x Predicted Observed x Predicted Observed

1 1 46.76 49.25 1 302.61 268.15 1 426.75 387.16

2 0.729 31.09 31.60 0.832 238.69 223.43 0.7803 309.81 281.51

4 0.6562 27.18 28.18 0.7744 217.82 204.34 0.7759 307.94 296.82

8 0.4712 17.80 20.63 0.6602 177.62 155.76 0.6738 257.15 231.33

16 0.2554 8.24 9.83 0.5601 144.20 135.55 0.5405 194.29 188.45

32 0.1309 3.73 3.93 0.4697 115.66 115.74 0.4131 138.62 134.66

64 0.0654 1.86 2.04 0.2822 61.58 58.22 0.2285 67.13 67.16

128 0.0522 2.27 3.41 0.2017 45.85 46.12 0.1338 42.71 47.02

256 0.0381 3.79 5.48 0.0967 34.68 40.68 0.0854 45.86 53.96

512 0.0264 8.10 16.60 0.0483 55.63 58.20 0.0503 78.89 84.95

1024 0.0146 19.12 23.86 0.0278 125.38 114.30 0.0269 176.64 168.28

Table 5: Comparison of theoretical predictions with observed times in seconds for the parallel method for data of varying
sizes.  All observed times are the average of 5 separate runs.  The jobs were run using a maximum of 34 processors.  For
all cases n=2048, a=1.3.  The theoretically predicted times were computed from equation (4) using observed values of x
from the test runs as shown in this table and Table 1.  Equation (4) was scaled by  TORIGINAL / na  where  TORIGINAL   is taken
from Table 4.   There is good correspondence between the predicted and observed values.  Importantly, the optimal value
of m is matched for all predictions and observations for each data size are indicated in bold.  

Figure  1:  Performance  profile  for  the  Divide  and
Conquer  scheme.  Shown  are  number  of  parameters
evaluated  per  second  as  a  function  of  number  of
processors.



the  observed  values.   We  believe  these  results  provide
validation for our method.  

For  our  second  experiment,  we chose  to  see  how many
parameters we could search in a fixed time by increasing
the number of processors. The motivation was primarily to
validate the ability to scale the algorithm. This was run on
the LoneStar cluster of 1024 Intel  Xeon processors with 1
gigabyte RAM per processor made available to us through
NSF TeraGrid.  We tested up to 512 processors since all
1024  processors  were  not  functional  during  our  testing
phase. For this experiment we fixed m=100 and varied k to
be approximately 30 times  p, the number of processors.  k
couldn't be exactly 30*p since k must be a perfect square in
UltraScan. One may note that the system appears to become
overdetermined,  but  this  does  not  effect  NNLS,  because
NNLS  actually  performs  an  incremental  sequence  of
unconstrained linear least squares problems starting with a
single basis function (for more details see [7]).  The results
are shown in Table 7 and a linear regression of the number
of parameters searched per second is  shown in  Figure 1.
We conclude  that  this  algorithm scales  linearly  with the
number  of  processors  and  can  be  used  to  search  an
extremely large number of parameters.

6 Conclusion

We  have  presented  a  new  method  for  solving  large
problems in optimization.  Our method gives serial speedup
and parallelizes efficiently.  The results are not generally in
exact correspondence with the original problem, but can be

No of 
processors

Actual time in
seconds

Number of parameters
searched

4 396 12,100

8 435 25,600

16 443 48,400

32 439 96,100

64 441 193,600

128 449 384,400

256 494 774,400

512 452 1,537,600

Table  7:  Implementation  results  for  running  on  the
LoneStar  cluster  of  TeraGrid.  This  demonstrates  the
increased  resolution  possible  for  the  method  keeping
time constant and increasing the number of processors.
In each case m=100. The problem was the analysis of
AUC experimental  data  which  contained  80,640  data
points.

m x

Relative data size

1 2 4

Predicted Observed Predicted Observed Predicted Observed

1 1 51.34 73.03 332.30 332.75 468.61 490.65

2 0.7811 39.63 42.98 256.51 252.56 361.74 391.52

4 0.7449 38.96 38.36 252.14 230.58 355.57 358.90

8 0.6184 33.78 32.35 218.66 188.21 308.36 286.63

16 0.4731 28.49 22.96 184.38 174.85 260.02 247.74

32 0.3531 25.43 18.20 164.58 164.81 232.09 232.01

64 0.1973 22.13 17.60 143.23 128.49 201.99 201.99

128 0.1294 23.55 23.60 152.45 144.26 214.98 206.72

256 0.0785 26.68 31.83 172.70 155.84 243.54 252.68

512 0.0454 31.59 42.54 204.44 185.97 288.31 286.15

1024 0.0247 38.24 43.63 247.49 220.33 349.01 288.18

Table 6: Comparison of theoretical predictions with observed times in seconds for the serial method for data of varying
sizes.  All observed times are the average of 5 separate runs.  For all cases n=2048, a=1.3.  The theoretically predicted
times were computed from equation (3) taking values of x from Table 1.  Equation (3) was scaled by TORIGINAL / na  where
TORIGINAL is taken from Table 4.   There is good correspondence between the predicted and observed values using average
values for x.  If one uses the observed values of x from  Table 1 instead of the average, even closer correspondence is
obtained.  Importantly, the best speedups are achieved with m=64 for all predictions and observations as indicated in
bold.



made  sufficiently  close  through careful  use  of  the  given
heuristics.  Exact correspondence can be obtained for some
problems  with  our  iterative  variant.  A  performance
prediction model was given which has been validated by
experimental runs.  The scalability of this method has been
demonstrated on a large cluster of 512 processors.

The  developments  described  here  have  far  reaching
significance  for  the  field  of  biophysics,  and  other  areas
where  multivariate  optimization  is  applied.   For  our
example, due to restrictions in computer processing power
and  memory,  a  non-stochastic,  model-independent
optimization  approach  has  so  far  not  been  possible.
Because of this limitation, SV fitting has been relegated to
either model dependent, non-linear approaches [18], which
introduce user  bias  and  often fail  to  converge,  or  model
independent approaches that are either limited in resolution
and information content  [19],  or  approaches that  are  not
suitable for  the general  case [20]  where heterogeneity in
mass  and  shape  may  exist  simultaneously.  This  latter
requirement is crucial for many systems in biophysics and
biochemistry.  Another important aspect is the generality of
the application.  A large class of multivariate optimization
problems  can  be  conveniently  solved  with  this  method.
Many linear problems (whether optimized with NNLS or a
generalized  least  squares  approach,  or  by  other  fitting
metrics) can now be reformulated to match our approach
and benefit from parallelization.
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