
Computing Large Sparse Multivariate Optimization Problems with an
Application in Biophysics

Abstract

We present a novel divide and conquer method for
parallelizing a large scale multivariate linear optimization
problem, which is commonly solved using a sequential
algorithm with the entire parameter space as the input.
The optimization solves a large parameter estimation
problem where the result is sparse in the parameters. By
partitioning the parameters and the associated
computations, our technique overcomes memory
constraints when used in the context of a single
workstation and achieves high processor utilization when
large workstation clusters are used. We implemented this
technique in a widely used software package for the
analysis of a biophysics problem, which is representative
for a large class of problems in the physical sciences. We
evaluate the performance of the proposed method on a
512-processor cluster and offer an analytical model for
predicting the performance of the algorithm.

1 Introduction
Spectroscopic applications from fields such as astronomy,
physics, and biochemistry involve experiments which often
generate large amounts of data. Analysis of such data
typically involves fitting the experimental data to a
parameterized model. A crucial and time-consuming
computational task in these analyzes is the determination
of a subset of parameters from a much larger parameter
space which best model the experimental data. This is
achieved using standard optimization techniques. One
such approach fits experimental data to a linear
combination of vector representations of basis functions on
the parameter space. Our motivating application, chosen
from the field of biophysics, is analytical
ultracentrifugation (AUC) [1, 2, 3]. AUC is a powerful
technique for determining hydrodynamic properties of

biological macromolecules and synthetic polymers in
solution, and one where very large datasets are frequently
encountered. Hydrodynamic parameters determined from
such experiments allow the investigator to identify shape,
molecular weight, and partial concentration of each solute
in the mixture.

The computational task of analyzing the experimental data
(denoted as data henceforth) to build the best model can be
organized into four phases: selecting the appropriate
parameter search space, evaluating the basis functions on
the parameters, eliminating systematic noise, and
selection/identification of the parameters whose basis
functions best fit the data. In our case, each basis function
is evaluated using a finite element solution of a
partial differential equation (PDE). High-performance
computational techniques for this final phase of the
analysis are well-known and are not the focus of this paper.
The resolution of the model is often dictated by time
constraints and memory limitations of a high-performance
workstation. In this paper, we introduce a new method for
optimization (finding the best model of the data) which
addresses memory limitations, provides serial speedup and
parallelizes with negligible communication overhead and
no excess computation.

The contributions of the paper are both in the development
of efficient computational techniques and their application
to the AUC problem in biophysics. First, we present a
divide and conquer method to partition the parameter
space and the associated computations. Our method
speeds up the computation for both sequential and parallel
computing approaches and improves resolution by
overcoming memory constraints, allowing larger number
of parameters to be searched. We also develop an
analytical model to predict the performance and optimal
number of processors to use for a given cluster and
problem set. Another contribution of the paper is the
extensive evaluation of the proposed techniques using data
from a large biophysics experiment which is analyzed on
high performance cluster computers. Without our
techniques, the largest number of parameters that could be
searched using sequential techniques on a high-end
workstation (Opteron with 4 gigabytes of RAM) was
approximately 6.4 * 103 parameters. Using our techniques,
we have been able to increase the size to 1.5 * 106

parameters using a cluster of 512 nodes without increase in
execution time. This increased resolution provides higher
accuracy and higher information content for a given

Emre H. Brookes
Department of Computer Science

University of Texas at San Antonio
ebrookes@cs.utsa.edu

Rajendra V. Boppana
Department of Computer Science

University of Texas at San Antonio
boppana@cs.utsa.edu

Borries Demeler
The University of Texas Health
Science Center at San Antonio
demeler@biochem.uthscsa.edu

Permission to make digital or hard copies of all or part of
this work for personal or classroom use is granted without
fee provided that copies are not made or distributed for
profit or commercial advantage and that copies bear this
notice and the full citation on the first page. To copy
otherwise, to republish, to post on servers or to
redistribute to lists, requires prior specific permission
and/or a fee.

SC2006 November 2006, Tampa, Florida, USA

0-7695-2700-0/06 $20.00 ©2006 IEEE

experiment.

This paper is organized as follows: After the background
material on AUC, we describe our method in the framework
of set functions on the parameter space, using both serial
and parallel approaches. We partition the parameter space,
apply the function to each set in the partition, union the
results and apply the function again. This approach is
generally not exactly equivalent to applying the function to
the full unpartitioned parameter space, but does allow us to
analyze much larger problems. We introduce an iterative
variant which is empirically exact for some set functions.
Next, we give an analytical model of our method for
performance prediction. Finally, we experimentally
validate our performance prediction and describe the results
for a large biophysics experiment on a 512 node cluster
made available to us through TeraGrid.

2 Background
Many of todays' biomedical research projects studying the
molecular basis for cancer and other diseases focus on the
understanding of dynamic interactions among molecules
implicated in the disease process. Sedimentation velocity
(SV), one of several AUC techniques, offers a high-
resolution approach to study such interactions. SV is a
rigorous hydrodynamic technique and essential tool for the
characterization of solution properties of biological and
synthetic macromolecules, applicable to molecules with
mass of just a few thousand Daltons to systems as large as
whole virus particles. Analysis of SV data provides
hydrodynamic information such as sedimentation and
diffusion coefficients which can be used to determine
molecular weight and shape, two important metrics for
biomedical research. In SV experiments, a solution
containing a macromolecular solute or mixture of solutes is
sedimented in a centrifugal force field and the transport
processes for each molecule are observed over time in
order to measure sedimentation and diffusion rates.
Experimental data are collected 200-1000 times during the
sedimentation process in the form of concentration profiles
showing the sedimenting boundaries along the radius of the
ultracentrifugation cell. Depending on the optical detector,
a total of 500-2000 radial points may be collected for each
time point. The concentration profiles change over time
due to the two transport processes acting on each solute,
sedimentation and diffusion. For the sector shaped
geometry of the ultracentrifugation cell, these processes are
modeled by the Lamm equation, a second order PDE [4]
parameterized by the sedimentation and diffusion
coefficients. The Lamm equation is efficiently computed
by an adaptive space-time finite element method
(ASTFEM) proposed by Cao and Demeler [5]. Using
appropriate initialization procedures (described in [6]), a
grid is placed on the 2 dimensional parameter space, where
each grid point defines the parameters for one basis
function of the model. After finding the best fit linear
combination of basis functions to the data, the amplitude of
each term identifies the partial concentration of each solute.

Because a negative concentration does not make physical
sense, it is critical to constrain the value of the amplitude to
positive values only, or zero if the solute is not present.
Our approach to fit SV data to the parameterized models
uses the NNLS algorithm [7] to determine the amplitudes.
This approach guarantees positively constrained amplitudes
and allows us to determine the partial concentration of each
solute. In practice this method returns excellent results, but
we often needed to analyze systems that overflowed
available memory, prompting the improvements described
in this work.

3 Divide and Conquer Techniques for
Optimization
In this section, we provide a divide and conquer approach
to facilitate efficient implementation of optimization on
sequential as well as large parallel computers. We will also
provide an analytical model to predict the execution time
complexity of the proposed techniques. We have extensive
experience with the NNLS algorithm used in the analysis of
AUC data. Therefore, we use NNLS as an example to
illustrate our model and also to validate it against actual
computation times of NNLS on clusters. However, our
analytical model and parallelization techniques may be
applied to other optimization problems. Many optimization
problems where the majority of the parameters do not
contribute to the model could utilize our method. Noise
handling and data stabilization techniques such as Tikhonov
regularization using NNLS or TGSVD[8] can also be
incorporated. In AUC, the method of time invariant noise
removal by removing radial averages [9] has been handled
successfully by our method.

To describe our method, we introduce the following
notation. Let U be the set of all possible parameters. In
AUC, each parameter is a pair of real numbers, so in this
case U is ℜ×ℜ. Let R, S and RT be nonempty subsets of U.
S denotes the search space: the set of parameters to our
basis functions, which are checked for fitness against the
experimental data by the function f. RT=f(U) denotes our
target set, the unknown set of parameters that best model
the experimental data. In AUC, RT would be the set of
parameters that model the actual solutes. R=f(S) is the
result set and is dependent on the choice of S and the
optimization technique used. A perfect solution is achieved
when R = RT. This is feasible only when RT ⊆ S, which
requires a prescient initialization of S. Therefore, R is the
best possible solution for a given S. Additional notation
will be introduced as needed.

3.1 Divide and Conquer Method
We may need to search a large number of parameters (we
have used |S| = 103 to 106) to find R. Therefore, the
computational and memory requirements often exceed the
capacities of even high-end workstations. We develop
divide and conquer techniques for NNLS calculations to
overcome the memory limitations of workstations in

sequential computing and to facilitate efficient
parallelization of the computational task. We partition S
into disjoint sets Si, apply f to each Si , union the results and
apply f to the union. This procedure is described in Text 1.
Let RD denote the result set obtained with the divide and
conquer approach. Ideally, R and RD should be the same,
but in practice, they usually differ. If the size of the final
union, |Rint| in step 5 of Text 1, is too large to apply f, then
the divide and conquer method can be applied recursively
by partitioning Rint.

The divide and conquer method improves execution time
on both sequential and parallel computers. If a single high-
performance workstation is used, the divide and conquer
method can be used to overcome the constraint on the size
of S due to main memory; the user can choose arbitrarily
large S as desired for accurate modeling at the cost of
increased execution time as long as each application of f to
Si can fit in the available memory. We show in the
analytical modeling section that, for a given S, the
computational time is also reduced (dramatically for
computationally expensive optimization problems). If a
large workstation cluster is used to perform the
optimization, then the most computationally intensive step
4 in Text 1 can be done in parallel, yielding high processor
utilization.

3.2 Improving the Accuracy of Results
Arbitrary application of the divide and conquer approach to
the optimization problem can lead to unsatisfactory results
since f does not 'see' all the parameters of S at once. Based
on our analysis of AUC data, we propose the following
heuristics to ensure that the quality of the solution with the
divide and conquer approach, RD, is identical or nearly
identical to that of the original method, R, in which f is
applied to the entire S.

● Partition S carefully: When partitioning S into
disjoint sets, some care must be taken to achieve the
best results. Each set should cover the space covered
by S, though sparsely. In other words, the range and
density of the each set should be similar. The intuition
is that each application of f is trying to find the best
combination of basis functions to fit the data.
Therefore, if f does not get a diverse set of parameters
to work with, then it will have a hard time selecting

appropriate basis functions. We experimented with
different partitioning strategies and found that the
suggested approach yields RD that is nearly identical to
R. We now describe the method we use to partition S.
Given each parameter in S is of d dimensions, we must
first find bounded intervals for each dimension of the
parameter. This requires some knowledge about the
possible range of the parameters, usually based upon
physical limits. For our AUC example, this problem
has been solved previously [6]. Given some target
number of parameters, we can place a d dimensional
grid on S with each point determining a parameter.
Then, a subgrid can be defined that consists of every i-
th point of the original grid in each dimension. This
subgrid defines one of the sets Si of the partition of S.
The subgrid can be moved over the original grid, in
each dimension, with each move defining a new set Si

until every point in the original grid is included in
some set.

● Apply f on the results obtained iteratively: After
obtaining the final result for the basic method (at the
end of step 5 in Text 1), all parameters in RD are
unioned back into each Si and the procedure is repeated
until the results no longer vary. We found in our
empirical analysis this iterative variant is in exact
correspondence to R when f consists of evaluating the
basis functions independently and performing NNLS.
However, when f has additional processing steps (e.g.
noise removal), the iterative results may not converge
to a fixed parameter set. In such cases, the iterative
procedure can still be applied, but some termination
criteria based upon goodness-of-fit should be
implemented. Of course, when early termination is
applied this way, the result is unlikely to be exact. The
iterative phase adds to the execution time and,
therefore, should be applied only when necessary. In
AUC without noise removal, we have seen
convergence (RD→R) in 3 to 7 iterations. For systems
with noise removal, we have achieved our best fit (no
further decrease in residual) in 5 to 10 iterations.

● Use larger S: Instead of applying the iterative
technique above, the initial S may be increased to
obtain RD that is close to R. For the NNLS optimization
technique, we observed that roughly doubling the
number of parameters in the initial S yields the same
fitness as would be obtained with the original
sequential approach. This would correspond with a
grid of increased point density, which of course, comes
with a performance penalty. For example, in AUC,
instead of using a 2 dimensional grid of u∗v
parameters, one would use a grid of approximately
2u∗2 v parameters.

4 Analytical Model for Performance Prediction
In this section, we develop an analytical model to predict
the execution time complexity, speedup over the original
sequential method, efficiency of parallelization and optimal
partitioning of S for a given computer cluster.

1. Select search parameters S
2. Partition S into k disjoint sets Si

3. for i = 1 to k
4. Apply f to Si and union the results into a set Rint

5. Apply f to Rint giving the final set of results RD

Text 1: A divide and conquer method to speedup
optimization techniques. The computation resulting
from an application of f to an Si is called the basic
computation module.

Let n=|S|, the number of parameters in S. The optimization
problem of finding R can be described as a function f
returning the subset of parameters of the input set which
contribute to the best fit model. Let P be the power set of
U, i.e. the set of all subsets of U. Then f can be defined as a
function from P to P, which simply means that f takes a
subset of U as input and returns some subset of U. Actually,
f will always return a subset of the input set, since these are
the only parameters that f knows about. The work done
within f consists of evaluating basis functions, one for each
parameter, and finding the best fit of the basis functions to
the data. If the basis functions are built independently (i.e.,
one basis function for each parameter, which is the case in
AUC when we assume non-interacting molecules), the basis
function evaluation phase has time complexity O(n).
Finding the best fit in our case uses NNLS, for which a
general time complexity formula is unknown, although an
unlikely worst-case complexity has been given [10]. We
have used exponential regression to approximate a time
complexity of O(n1.3). In practice, the experimental data
can be quite noisy. For example, in AUC, a fingerprint on
the cell adds time-invariant noise to the data. One method
we use to eliminate time invariant noise consists of
removing radial averages from all basis functions, which
has a time complexity of O(n2) [9]. Our divide and conquer
approach can also be applied in such instances. Therefore,
we model the execution time for the original sequential
technique in which f is applied to the entire set S as

TORIGINAL = O(na), a > 1 (1)

To find RD, we assume that we start with |S| >> |R|.
Partition S into k disjoint sets Si , i ∈ {1,2,...,k}. Assume
they all have the same cardinality, m = |Si|, therefore, k =
n/m. If k=1 we have simply repeated the initial problem of
computing f(S). Therefore, we only consider the instances
where 1<k<=n. In general, the number of parameters
returned for each application of f on each Si is dependent on
k, f, S and R. Let x = E(|f(Si)|)/m, the expected fraction of
the number of parameters returned. When x is not known
statistically, one can roughly assume

x = 1 for m<|R| and x=|R|/m for m>=|R| (2)

This assumption is based on our observations of f for
NNLS. When f is given fewer parameters than |R|, f
generally returns all the parameters, giving a probability of
1. When f is given more points than |R|, it returns
approximately |R| points. However, |R| is often not known,
therefore a statistical determination of x is recommended.
For an a priori estimate, one can select random samples of
S of size m, apply f, and subsequently estimate x. This
procedure would require some additional preparatory
computation to achieve maximum speedup for the given
data. In Table 1 we compute an average value of x from
sample runs with data of different sizes and compare this
with equation (2).

Now, we can estimate the total execution time of applying f
to each set Si and applying f to the union of the results. If a
single computer is used, the serial execution time is:

TSEQ = O(k ma + (x n)a) = O(n ma-1+ (x n)a) (3)

where the first term is due to the application of f to each Si

and the second term is due to the application of f to the final
union. Each application of f to Si can be easily performed
in parallel. If p processors are available, the execution time
is:

TPARALLEL = O(k / p ma +(x n)a), for p > 1 (4)

For efficient parallel computing, the time spent the the first
term should dominate the time spent on the second term,
which must run serially.

Of particular importance is finding the optimum value of m
which gives the minimum execution time, for fixed n, a and
x. In general, this seems to be a difficult problem, since x is
dependent on k, f, S and R. First, we determine x for
various m. Then, using a fixed constant of proportionality
to remove the big-O (assuming the data is fixed), we can
divide equation equation (1) by equation (3) or (4) to
compute the best possible serial or parallel speedup. In
Table 2 we see the maximum theoretical serial speedups
that are achievable for a given x and a, after fixing n=2048.
It is interesting to note that the optimal value of m for the
best speedup is not very dependent on a, though a does
primarily determine maximum serial speedups that are
achievable.

4.1 Modeling Recursive Use of Divide and
Conquer in the Combining Phase

Another issue that must be addressed is the size of the final
union, |∪ i (f(Si))| which may exceed the available memory
and practical execution time limits. This can be alleviated
by further partitioning the results. Let S(1) = ∪ i (f(Si)), then
we can repeat the procedure for S by substituting S(1),
keeping m constant from S to S(1), (note that m will most
likely not divide n(1) = |S(1)|), so k(1) = n(1) / m. We call
each recursive application of the divide and conquer
technique a stage, so S(1) is the first stage of recursion (the
initial procedure for S is the zeroth stage). Continuing on,
we may have additional stages S(2), S(3), ..., until we have a
stage with |S(r)| <= m. To achieve this, we have to take
some care choosing m, since if m < |R|, we may never have
|S(r)| <= m. This condition can be checked and m increased
appropriately, alternatively, m can be increased at each
stage up to some predefined limit based upon available
memory and maximum allowed execution time. Note that x
will likely vary somewhat from S to S(1), S(2), etc. In
practice, the average x for the zeroth stage is a good
predictor of x on subsequent stages. We can assume x is
constant at each stage and x < 1. (If x = 1, then there will

be no decrease in the problem size and the computation will
not terminate). First, we analyze the serial multi-stage case.
For the first stage, n(1) = xn. For stage j, n(j) = xn(j-1) = xjn,
and the number of basic computation modules k(j) = n(j)/m =
x jk. We will have a stage with only one set (a final result
union) when k <= x-r for some r calculated as follows:

r = log k / -log x (5)

Therefore, the total number of times the basic computation
performed is

∑ (j = 0..r) xj k ≅ k * (1 - xr+1) / (1 - x) ≅ k/(1-x), (6)

since either x<<1 or r is large, and (1-xr+1) ≅ 1. Since the
execution time complexity of each basic computation
module is O(ma), the overall serial execution time
complexity is approximately

TMULTISTAGE-SEQ = O((k/(1-x)) ma) (7)

4.2 Efficiency of Parallel Processing

The organization of the parallel implementation proceeds as
follows. We begin at the zeroth stage with a master process
partitioning the parameters S. These sets of the partition
are distributed to available workers. Each worker applies f
to their set of the partition, performing the basic

computational module. When the worker is done, the
subset of their set which contributes to the solution are
returned to the master. When sufficient zeroth stage results
are available (a union of parameters with cardinality not
greater than m), the master can begin distributing first stage
jobs to the workers. This procedure continues until the
final stage is complete. For the iterative variant, the entire
process will repeat multiple times. In this analysis, we
consider the overheads and efficiency of a single iteration
of our method.

The inefficiencies in parallel computing can be due to three
sources: (a) interprocess communication that cannot be
masked by productive computations, (b) excess
computations, often used to reduce communication among
processes, and (c) processor idling. For the problems we
investigated, the interprocess communication involved
consists of sending out and receiving sets of parameters,
which are quite small and insignificant compared to the
time spent by each worker to perform the basic computation
module. Additionally, the initial data set must be
distributed to all the processors once. It may be that for
some applications, the basis function evaluation phase is
expensive, and some caching of vector representations may
be of benefit. There is no excess computation in the
parallel algorithm, as it is identical to the serial divide and
conquer algorithm with the addition of the communication
of parameters. The major source of inefficiency in our

m
Relative data size

1 2 4 8
Average |R|=10

1 1.0000 1.0000 1.0000 N/A 1.0000 1.0000

2 0.7290 0.8320 0.7803 0.7832 0.7811 1.0000

4 0.6562 0.7744 0.7759 0.7730 0.7449 1.0000

8 0.4712 0.6602 0.6738 0.6685 0.6184 1.0000

16 0.2554 0.5601 0.5405 0.5366 0.4731 0.6250

32 0.1309 0.4697 0.4131 0.3989 0.3531 0.3125

64 0.0654 0.2822 0.2285 0.2129 0.1973 0.1563

128 0.0522 0.2017 0.1338 0.1299 0.1294 0.0781

256 0.0381 0.0967 0.0854 0.0938 0.0785 0.0391

512 0.0264 0.0483 0.0503 0.0566 0.0454 0.0195

1024 0.0146 0.0278 0.0269 0.0293 0.0247 0.0097

Table 1: The observed values of x for data of various sizes. The N/A entry is because this system was too large to compute
the final application of f for m=1 on a single machine. All the data were taken from an AUC experiment of an identical
mixture. Larger data sets were obtained by combining results from multiple experiments of various centrifugal rotational
speeds. Other mixtures will result in different average x. The final column is an estimate of x for |R|=10, a number we
believed might be representative of our data. More general study of the relationship of x to the data would likely lead to
better estimators.

parallel method is processor idling in the combining stage.
The remainder of the section discusses this issue in depth.

The execution time is simply the number of stages times the
execution time of a stage, which is O(ma), assuming
sufficient number of processors are available. So the
minimum execution time in the parallel case with sufficient
processors is

TMULTISTAGE-PARALLEL = O(r ma) (8)

If we have p processors, then the execution time of stage j
is

O(k(j) / p ma) = O(xj k / pma) (9)

Summing over all stages

∑ (j = 0..r) xj k / p ma ≅ [r+(k /p)/(1-x)] ma

Assuming one stage must complete before the next stage
can begin, the execution time in the parallel case with
limited processors is

TMULTISTAGE-PARALLEL = O([r+(k /p)/(1-x)] ma) (10)
Since (1-x) is Θ(1) values of m >> |R| it can be omitted from
equations (7) & (10). In practice, once sufficient results are

available from one stage, the next stage processing can be
performed simultaneously, thus increasing processor
utilization and lowering the value of (10). Equation (9)
provides insight into processor utilization. Note k(r)

decreases at each stage until the final stage when k(r) = 1.
Therefore, at the final stages, processors become idle, until
the final stage is performed on one processor. This places a
limit on overall processor utilization.

The overall speedup and efficiency can be estimated as
follows. Let l be the number of stages up to which the
number of basic computation modules is at least p. So
k(l) ≥ p; and

l = log(k/p)/ -log(x).

Using the total computation in units of basic computation
modules given in equation (6) and the execution times
given in Table 3 for various stages of parallel computation,
the speedup, γ, and processor utilization, η, are calculated
as follows:

 γ = [k/(1-x)] / [(k/p)/(1-x) + r-l] (11)
η = [(k/p)/(1-x)] / [(k/p)/(1-x) + r-l] (12)

To maximize processor utilization, it is best to set k to some

|R|
a

1.1 1.3 1.5 2 2.5 3 3.5

2 1.41
32

3.33
16

7.54
16

51.20
32

341.33
32

2048.00
32

10922.67
32

4 1.33
64

2.82
32

5.91
32

32.00
32

153.83
64

819.20
64

4279.56
64

8 1.24
128

2.38
64

4.53
64

21.33
64

90.51
64

341.33
64

1158.52
64

16 1.16
128

1.99
128

3.40
128

12.80
128

47.28
128

170.67
128

599.85
128

32 1.09
256

1.67
128

2.67
128

8.00
128

21.33
128

56.89
256

160.91
256

64 1.03
512

1.43
256

2.09
256

5.33
256

13.25
256

32.00
256

74.98
256

128 0.97
1024

1.21
512

1.60
512

3.20
512

6.40
512

12.80
512

25.60
512

Data from
Table 1

1.16
128

2.11
64

3.78
64

14.25
64

46.19
128

164.66
128

569.48
128

Table 2: Maximum theoretical serial speedups and the associated optimal value of m (below each speedup) for various
values of a. The comparison is between equations (1) and (3) for n=2048. For the last row, x is obtained from Table 1.
For the other rows, |R| is given and x is computed with equation (2). Note the speedups increase with increasing a and the
optimal values of m remain relatively unaffected by a. Also, the optimal values of m increase monotonically with
increasing |R|.

multiple of the number of processors. For the application
below, we used a multiplier of 30. This means each
processor will be busy with 30 zeroth stage applications of
f, before it is required to apply f to any further stages. If
there are 4 additional stages, then the global system
utilization will be approximately 90%. In principle, one
could target arbitrarily high global system utilizations by
increasing the multiplier of p to determine k.

To further elucidate, say that an application of f on a set of
size m takes 1 minute. If each processor must compute 30
applications of f , then this will take 30 minutes, with all
processors fully occupied. If there are 4 additional stages
and x = .1, then the first stage will require 3 applications of
f by each processor, for an additional 3 minutes, again with
full processor utilization, then the second stage will then
only keep 30% of the processors busy for 1 minute, the
third stage, 3% for 1 minute and the final stage will keep 1
processor busy for 1 minute. So during approximately 33.3
minutes of a 36 minute calculation, all processors are busy,
giving a utilization of 92.5%. In this example, r=4, l=1,
x=0.1, and k/p=30; plugging these values in equation (12)
gives η = 91.7%. The discrepancy is due to the
approximation made in the calculation of total time spent in
the first (l+1) stages.

We assumed that number of parameters given to each
computation module is the same. This is true for the first
stage where each Si contains m parameters. However,
subsequent stages are given parameters of cardinality less
than or equal to m. Therefore, the execution time of those
modules will be less. This can improve the efficiency over
the formula given in equation (12).

5 Evaluation of Analytical Model
In this section, we describe the implementation of the
proposed divide and conquer method for NNLS and noise
removal algorithms in a production software called
UltraScan, used by researchers worldwide. Using the actual
data obtained in AUC experiments and analyzes of the
same in the software package, we validate the accuracy of
the proposed performance prediction model.

For our observational results we analyzed a simulated SV
experiment. Our method has been implemented in the
UltraScan software [11] since 2005 and is heavily used in
the AUC community. The parallelization of this method
was implemented in 2006 and announced at the Analytical
Ultracentrifugation Workshop in San Antonio [12] and
demonstrated at the recent AUC conference [13]. Job
submission to the parallel version is made available through
a convenient web interface [14]. The UltraScan software is
written in C++, and parallel versions use MPI [15,16]. We
implemented the allocation of basic computation modules
to various processors using a master-worker model. A
master process keeps track of the basic computation
modules. Each free worker processes queries and receives a
few computation modules; upon completing the execution,
it returns the result parameter set to the master and receives
additional computational modules. It is noteworthy that
when the multistage method is used, all the basic
computation modules in one stage need not be finished to
start the computations in the next stage. This helps
maximize processor utilization.

All observed execution times are from running an
instrumented version of UltraScan, which offers the
capability to globally analyze multiple experiments
simultaneously [17]. The f in UltraScan consists of building
basis functions for each parameter, optionally processing
for time-invariant noise, and running NNLS. Our results
reflect simulations without time-invariant noise. We have
observed corresponding results for experiments containing
time-invariant noise (data not shown). UltraScan partitions
S, a 2 dimensional parameter space bounded by physical
constraints, by starting with a regularly spaced grid over
this space. This grid serves as the initial set of the partition.
The next set is created by moving the grid by a fraction of
the grid spacing in each dimension. Each movement of the

Relative data size

1 2 4

TORIGINAL 46.61 301.67 425.42

Table 4: TORIGINAL computed for different data sizes. The
data sets are the same as those used in Table 1, we kept
n=2048. We believe the large TORIGINAL between the data
size 1 and 2 is due to caching. Note the increase from 2
to 4 is not as significant.

Stage
j=0, ..., l

Stage j=
l+1, ..., r

Processors
used p < p and

≥ p xj-l

Time spent
in a stage

(in units of
basic module
computation

times)

k xj/p 1

Total time
spent

∑ (j = 0..l) xr k/ p
 =(k/p) *(1-xl+1)/(1-x)

≅ (k/p) *1/(1-x)
(r-l)

Table 3: The time spent in various stages of the
multistage parallel method.

grid creates an additional set of the partition. This way, S
and the partition of S are built up from an initial partition
set which is moved around to eventually cover the entire
parameter space S. This method limits k to be a perfect
square. We report here results from runs performed
without the iterative method.

We conducted two sets of computer runs. The first set is
used to validate the performance prediction model for the
serial and parallel single stage case. The second set of
computer runs is used to demonstrate the highly efficient
parallel execution of the multistage optimization algorithm
in the UltraScan software.

In our first experiment we compare the theoretical
predictions of equations (1) and (3) with the observed
execution times. In this case AUC software was run on a
cluster of 40 Opterons with 2 gigabytes of RAM per
processor running Linux and located at the University of
Texas Health Science Center at San Antonio. The
motivation for this experiment was to compare our
theoretical predictions with real cases of varying data sizes.
For both the theoretical and observed cases we fixed
n=2048. We have empirical data giving an approximate a
of 1.3. To determine our speedup, we computed TORIGINAL

for each data set as reported in Table 4.

Given the values of x from Table 1, we can now compare
the theoretical predictions with the observations. These
results are summarized in Table 6 for the serial case and
Table 5 for the parallel case. We ran tests for varying m
and found that the optimum theoretical m coincided with

m

Relative data size

1 2 4

x Predicted Observed x Predicted Observed x Predicted Observed

1 1 46.76 49.25 1 302.61 268.15 1 426.75 387.16

2 0.729 31.09 31.60 0.832 238.69 223.43 0.7803 309.81 281.51

4 0.6562 27.18 28.18 0.7744 217.82 204.34 0.7759 307.94 296.82

8 0.4712 17.80 20.63 0.6602 177.62 155.76 0.6738 257.15 231.33

16 0.2554 8.24 9.83 0.5601 144.20 135.55 0.5405 194.29 188.45

32 0.1309 3.73 3.93 0.4697 115.66 115.74 0.4131 138.62 134.66

64 0.0654 1.86 2.04 0.2822 61.58 58.22 0.2285 67.13 67.16

128 0.0522 2.27 3.41 0.2017 45.85 46.12 0.1338 42.71 47.02

256 0.0381 3.79 5.48 0.0967 34.68 40.68 0.0854 45.86 53.96

512 0.0264 8.10 16.60 0.0483 55.63 58.20 0.0503 78.89 84.95

1024 0.0146 19.12 23.86 0.0278 125.38 114.30 0.0269 176.64 168.28

Table 5: Comparison of theoretical predictions with observed times in seconds for the parallel method for data of varying
sizes. All observed times are the average of 5 separate runs. The jobs were run using a maximum of 34 processors. For
all cases n=2048, a=1.3. The theoretically predicted times were computed from equation (4) using observed values of x
from the test runs as shown in this table and Table 1. Equation (4) was scaled by TORIGINAL / na where TORIGINAL is taken
from Table 4. There is good correspondence between the predicted and observed values. Importantly, the optimal value
of m is matched for all predictions and observations for each data size are indicated in bold.

Figure 1: Performance profile for the Divide and
Conquer scheme. Shown are number of parameters
evaluated per second as a function of number of
processors.

the observed values. We believe these results provide
validation for our method.

For our second experiment, we chose to see how many
parameters we could search in a fixed time by increasing
the number of processors. The motivation was primarily to
validate the ability to scale the algorithm. This was run on
the LoneStar cluster of 1024 Intel Xeon processors with 1
gigabyte RAM per processor made available to us through
NSF TeraGrid. We tested up to 512 processors since all
1024 processors were not functional during our testing
phase. For this experiment we fixed m=100 and varied k to
be approximately 30 times p, the number of processors. k
couldn't be exactly 30*p since k must be a perfect square in
UltraScan. One may note that the system appears to become
overdetermined, but this does not effect NNLS, because
NNLS actually performs an incremental sequence of
unconstrained linear least squares problems starting with a
single basis function (for more details see [7]). The results
are shown in Table 7 and a linear regression of the number
of parameters searched per second is shown in Figure 1.
We conclude that this algorithm scales linearly with the
number of processors and can be used to search an
extremely large number of parameters.

6 Conclusion

We have presented a new method for solving large
problems in optimization. Our method gives serial speedup
and parallelizes efficiently. The results are not generally in
exact correspondence with the original problem, but can be

No of
processors

Actual time in
seconds

Number of parameters
searched

4 396 12,100

8 435 25,600

16 443 48,400

32 439 96,100

64 441 193,600

128 449 384,400

256 494 774,400

512 452 1,537,600

Table 7: Implementation results for running on the
LoneStar cluster of TeraGrid. This demonstrates the
increased resolution possible for the method keeping
time constant and increasing the number of processors.
In each case m=100. The problem was the analysis of
AUC experimental data which contained 80,640 data
points.

m x

Relative data size

1 2 4

Predicted Observed Predicted Observed Predicted Observed

1 1 51.34 73.03 332.30 332.75 468.61 490.65

2 0.7811 39.63 42.98 256.51 252.56 361.74 391.52

4 0.7449 38.96 38.36 252.14 230.58 355.57 358.90

8 0.6184 33.78 32.35 218.66 188.21 308.36 286.63

16 0.4731 28.49 22.96 184.38 174.85 260.02 247.74

32 0.3531 25.43 18.20 164.58 164.81 232.09 232.01

64 0.1973 22.13 17.60 143.23 128.49 201.99 201.99

128 0.1294 23.55 23.60 152.45 144.26 214.98 206.72

256 0.0785 26.68 31.83 172.70 155.84 243.54 252.68

512 0.0454 31.59 42.54 204.44 185.97 288.31 286.15

1024 0.0247 38.24 43.63 247.49 220.33 349.01 288.18

Table 6: Comparison of theoretical predictions with observed times in seconds for the serial method for data of varying
sizes. All observed times are the average of 5 separate runs. For all cases n=2048, a=1.3. The theoretically predicted
times were computed from equation (3) taking values of x from Table 1. Equation (3) was scaled by TORIGINAL / na where
TORIGINAL is taken from Table 4. There is good correspondence between the predicted and observed values using average
values for x. If one uses the observed values of x from Table 1 instead of the average, even closer correspondence is
obtained. Importantly, the best speedups are achieved with m=64 for all predictions and observations as indicated in
bold.

made sufficiently close through careful use of the given
heuristics. Exact correspondence can be obtained for some
problems with our iterative variant. A performance
prediction model was given which has been validated by
experimental runs. The scalability of this method has been
demonstrated on a large cluster of 512 processors.

The developments described here have far reaching
significance for the field of biophysics, and other areas
where multivariate optimization is applied. For our
example, due to restrictions in computer processing power
and memory, a non-stochastic, model-independent
optimization approach has so far not been possible.
Because of this limitation, SV fitting has been relegated to
either model dependent, non-linear approaches [18], which
introduce user bias and often fail to converge, or model
independent approaches that are either limited in resolution
and information content [19], or approaches that are not
suitable for the general case [20] where heterogeneity in
mass and shape may exist simultaneously. This latter
requirement is crucial for many systems in biophysics and
biochemistry. Another important aspect is the generality of
the application. A large class of multivariate optimization
problems can be conveniently solved with this method.
Many linear problems (whether optimized with NNLS or a
generalized least squares approach, or by other fitting
metrics) can now be reformulated to match our approach
and benefit from parallelization.

Acknowledgments
We would like to express our appreciation to Jay Boisseau
and Warren Smith, and the staff from the Texas Advanced
Computing Center for assistance with the LoneStar
computations, and thank Dr. Hugh Maynard for discussions
in the preparation of this manuscript. This work was
supported by grant#10001642 to B.D., R.B., and Weiming
Cao from the San Antonio Life Science Institute and
National Science Foundation grant EIA-0117255 to R.B.
We also acknowledge a TeraGrid allocation to B.D. by the
National Science Foundation through grant TG-
MCB060019T. The development of the UltraScan
software was supported by the National Science Foundation
through grant DBI-9974819 to B.D., and Internet2
connectivity was made possible through grant ANI-228927
from the National Science Foundation to B.D. and R.B.

References
[1] COLE, J.L. and HANSEN, J.C. 1999. Analytical

Ultracentrifugation as a Contemporary Biomolecular
Research Tool. J. Biomolecular Techniques 10, 163-
174.

[2] VAN HOLDE, K.E. 1985. Physical Biochemistry, 2nd

Ed. Prentice Hall, NJ. 110-136
[3] DEMELER, B. 2005. Hydrodynamic Methods.

Bioinformatics Basics: Applications in Biological
Science and Medicine. 2nd Edition. H. Rashidi and L.
Buehler, Eds. CRC Press LLC. 226-255

[4] LAMM, O. 1929. Die Differentialgleichung der
Ultrazentrifugierung. Ark. Mat. Astron. Fys. 21B:1-4

[5] CAO, W. and DEMELER, B. 2005. Modeling analytical
ultracentrifugation experiments with an adaptive space-
time finite element solution of the Lamm equation.
Biophys J. 89(3):1589-602.

[6] BROOKES, E. and DEMELER, B. 2006. Genetic
Algorithm Optimization for obtaining accurate
Molecular Weight Distributions from Sedimentation
Velocity Experiments. Analytical Ultracentrifugation
VIII, Progr. Colloid Polym. Sci. 131:78-82. C.
Wandrey and H. Cölfen, Eds. Springer

[7] LAWSON, C. L. and HANSON, R. J. 1974. Solving Least
Squares Problems. Prentice-Hall, Inc.

[8] ASTER, R., BORCHERS, B., and THURBER, C. 2005.
Parameter Estimation and Inverse Problems, Elsevier
Academic Press, London.

[9] SCHUCK, P., and DEMELER, B. 1999. Direct Sed.
Analysis of Interference Optical Data in Analytical
Ultracentrifugation, Biophys. J. 76:2288-2296.

[10] HANSON, R. 2006. Personal communication.
[11] DEMELER, B. 2005. UltraScan - A comprehensive

software package for the analysis of analytical
ultracentrifugation experiments. The University of
Texas Heath Science Center at SA, Dept. of Biochem.
http://www.ultrascan.uthscsa.edu

[12] DEMELER, B. 2006. Analytical Ultracentrifugation
Workshop: Focus on Problem Solving - From
Experimental Design to Data Analysis.
http://www.ultrascan.uthscsa.edu/workshop/

[13] BROOKES, E. and DEMELER, B. 2006. A 2 D Spect.
Anal. for Shape and MW Dist. from Sed. Vel. Exp.
15th International Symposium on Analytical
Ultracentrifugation, London.

[14] WILSON, J. 2006. A web interface for the parallel 2-
dimensional spectrum analysis. The Center for
Analytical Ultracentrifugation of Macromolecular
Assemblies (CAUMA) at the University of Texas
Health Science Center at SA. http://cauma.uthscsa.edu

[15] GRAMA A., GUPTA A., KARYPIS, G., and KUMAR, V.
2003. Introduction to Parallel Computing, 2nd
Edition. Addison-Wesley, London.

[16] MPI FORUM. Message Passing Interface Forum.
http://www.mpi_forum.org

[17] BROOKES, E. and DEMELER, B. 2006. Global Sed. Vel.
Anal. using the 2-D Spectrum Anal.. 15th Int.
Symposium on Analytical Ultracentrifugation, London.

[18] DEMELER, B. and SABER, H. 1998. Determination of
Molecular Parameters by Fitting Sedimentation Data to
Finite Element Solutions of the Lamm Equation.
Biophysical Journal. 74, 444-454

[19] DEMELER, B. and VAN HOLDE, K.E. 2004. Sed.
velocity analysis of highly heterogeneous systems.
Anal. Biochem. Vol 335(2):279-288

[20] SCHUCK P. 2000. Size-distribution anal. of
macromolecules by sed. vel. ultracentrifugation and
Lamm equation modeling. Biophys. J. 78(3):1606-19

