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ABSTRACT Sedimentation data acquired with the interference optical scanning system of the Optima XL-I analytical
ultracentrifuge can exhibit time-invariant noise components, as well as small radial-invariant baseline offsets, both superim-
posed onto the radial fringe shift data resulting from the macromolecular solute distribution. A well-established method for
the interpretation of such ultracentrifugation data is based on the analysis of time-differences of the measured fringe profiles,
such as employed in the g(s*) method. We demonstrate how the technique of separation of linear and nonlinear parameters
can be used in the modeling of interference data by unraveling the time-invariant and radial-invariant noise components. This
allows the direct application of the recently developed approximate analytical and numerical solutions of the Lamm equation
to the analysis of interference optical fringe profiles. The presented method is statistically advantageous since it does not
require the differentiation of the data and the model functions. The method is demonstrated on experimental data and
compared with the results of a g(s*) analysis. It is also demonstrated that the calculation of time-invariant noise components
can be useful in the analysis of absorbance optical data. They can be extracted from data acquired during the approach to
equilibrium, and can be used to increase the reliability of the results obtained from a sedimentation equilibrium analysis.

INTRODUCTION

In recent years, new ultracentrifugal methods for modeling
the time course of sedimentation of macromolecules have
received much attention (Correia, 1998; Laue, 1997; Schus-
ter and Toedt, 1996; Stafford, 1997). In particular, tech-
niques that directly utilize solutions of the Lamm equation
(Fujita, 1962; Lamm, 1929) for data analysis are under rapid
development. This includes both improved approximate an-
alytical solutions (Behlke and Ristau, 1997; Holladay, 1979;
Philo, 1997), as well as new approaches for the efficient
numerical solution of the Lamm equation (Demeler and
Saber, 1998; Schuck, 1998; Schuck et al., 1998; Stafford,
1998). These new sedimentation velocity methods are at-
tractive, for example, because of their potential for the
rigorous analysis of sedimentation profiles of small peptides
(Philo, 1997; Schuck et al., 1998) and of interacting systems
of macromolecules (Bethune and Kegeles, 1961a, b; Cann
and Kegeles, 1974; Claverie, 1976; Cox, 1969; Cox and
Dale, 1981; Gilbert and Gilbert, 1973; Goad and Cann,
1969; Schuck, 1998; Stafford, 1998), and they are comple-
mented by improved methods for hydrodynamic modeling
and for the interpretation of the sedimentation coefficients
of macromolecules (Bloomfield et al., 1967; Byron, 1997;
de la Torre, 1992). However, these methods suffer from the
disadvantage that they cannot be directly applied to the
analysis of analytical ultracentrifugation data acquired with
the interference optical system.

The interference data acquisition system, as developed by
Yphantis, Laue, and co-workers (Laue, 1994; Laue et al.,
1983, 1984; Yphantis et al., 1984, 1994), has several virtues
that can make it the method of choice for a number of
different types of ultracentrifuge experiments. Refractomet-
ric detection is currently the only optical method that can be
applied if the solutes under investigation have no absorp-
tion, such as many synthetic polymers or polysaccharides.
Interference optical detection can also be very helpful if the
solutes under investigation have extinction coefficients that
are too small or too large, respectively, to be used at
practical concentrations in the absorption optical system, or
if the absorbance of the solute of interest is superimposed by
a large absorbance of buffer components. For example, ATP
or GTP binding proteins may require significant amounts of
nucleotide in the buffer during an experiment, rendering
absorbance analysis of such proteins next to impossible. In
the Optima XL-I, the linearity of the signal and the precision
and the sensitivity for proteins are very high, and can exceed
those of the absorbance optics. This is true, in particular, if
buffer components (such as HEPES and DTT) do not permit
the exploitation of the protein backbone extinction in the far
UV. In addition, since interference patterns are recorded
from the entire solution column at once, data acquisition is
much more rapid. This can increase the accuracy of the
recorded time course, and permits the accumulation of con-
siderably larger data sets, leading to improved confidence
limits in the sought parameters.

Unfortunately, interference optical data contain special
noise components that make them difficult to interpret di-
rectly. In addition to random noise, interference data contain
large, systematic time-invariant noise components (abbre-
viated in the following as TI), as well as significant sys-
tematic radial-invariant (RI) noise components. Both types
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of error are superimposed onto the interference fringe shifts
arising from the macromolecular solute distribution. The
elimination of the TI noise by time-derivative methods
(dc/dt) and g(s*) transformations have proven to be most
useful (Stafford, 1992; Yphantis, 1984). The g(s*) method
is based on a special case of the Lamm equation for ideal
noninteracting macromolecules in an infinitely long solu-
tion column. This is a good approximation for larger mac-
romolecules and higher rotor speeds, where the meniscus
can be depleted, and where negligible back-diffusion from
the bottom of the cell allows clear plateaus to be obtained.
Unfortunately, these conditions do not allow direct applica-
tion to small molecules or systems of interacting solutes.

The novel numerical methods for the hydrodynamic
shape analysis of small molecules and the methods employ-
ing numerical solutions of the Lamm equation can, in prin-
ciple, be adapted to the time-derivative analysis through
their extension to the calculation of differencesc(t 1 Dt) 2
c(t). These can then be used in the modeling of experimental
time-difference data (Stafford, 1998; J. S. Philo, personal
communication). Although this approach does allow the
modeling of interference optical ultracentrifuge data, for
statistical and computational reasons it does not seem com-
pletely satisfying. First, it requires the calculation of the
time differences of noisy data, and if smoothing or averag-
ing is applied to the data, this may introduce a small bias
(Johnson and Straume, 1994). Second, the time-derivative
transformation does not permit the well-known statistical
tests of goodness-of-fit that are related to the direct model-
ing of raw experimental data (Beechem, 1992; Johnson and
Straume, 1994). The goal of the present paper is the pre-
sentation of an alternative approach allowing the direct
least-squares modeling of interference optical data in a way
that takes into consideration the special noise structure.
Furthermore, we demonstrate its applicability and an anal-
ysis of the statistical accuracy of the derived parameters.

THEORY

Direct fitting of the time-invariant noise

The problem of finding the least-squares fit of experimental
data,an(r i), by modeling with a superposition of solutions of
the Lamm equation,L (tn, ri, sk, Dk), and an unknown
time-invariant (TI) noise componentb(r i) can be written as

Min
nk,Dk,ck,bi

O
n

O
i
Fan,i 2 Sbi 1 O

k

ckL n,i
(k)DG2

(1)

wherean,i 5 an(r i) denotes the experimental data of scann,
recorded at timetn and at radiusr i, Ln,i

(k) 5 L (tn, ri, sk, Dk)
denotes the solution of the Lamm equation for a component
k with sedimentation and diffusion coefficientsk and Dk,
respectively,ck denotes the loading concentration of species
k, and bi 5 b(r i) denotes the TI noise, or equivalently, a
local baseline offset at each radial grid point of the scan.
The summation is over allN scans, withR radial data points

per scan included in the analysis, which gives a total of
Ntot 5 N 3 R data points.

Because of the excessive number of unknowns that are
introduced by the unknown baseline componentsbi 5 b(r i)
(.1000 for a long solution column), this least-squares prob-
lems may seem to be extremely difficult to solve. However,
these unknowns can be directly eliminated by following the
strategy of separation of linear and nonlinear parameters
(Ruhe and Wedin, 1980). It permits the algebraical calcu-
lation of the least-squares values of the linear parametersbi

andck for any given set of nonlinear parameters, i.e., Lamm
equation solutionsL (tn, ri, sk, Dk).

By requiring the partial derivatives of Eq. 1 with respect
to the baseline parametersbj to vanish, we get
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where

a# j 5 O
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(k) 5 O

n

L n,j
(k)/N

are the average signal and Lamm equation solution, respec-
tively, at radiusr j. Similarly, setting the partial derivatives
of Eq. 1 with respect to the concentrationscl zero and
inserting Eq. 2, we can obtain a system of linear equations
for the concentrationsck:
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These algebraic Eqs. 2 and 3 allow direct calculation of the
least-squares concentrationsck and all TI noise components
bi (positivity of the concentrations can easily be achieved
using the algebraic methods described in Lawson and Han-
son, 1974). Even though the number of parametersbi to be
determined can be very large, this algebraic calculation is
computationally very inexpensive compared with the nu-
meric solution of the Lamm equation.

Therefore, it is advantageous to solve the minimization
problem by nonlinear regression for the nonlinear parame-
ters sk and Dk as unknowns, using conventional curve-
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fitting routines,

Min
sk,Dk

O
n

O
i

@an,i 2 L n,i
* ~k!~sk, Dk!#

2 (4)

while at the same time algebraically calculating for each set
of (sk, Dk) the least-squares valuesck(sk, Dk) andbi(sk, Dk)
and the best-fit linear combination

L n,i
* ~k!~sk, Dk! 5 bi~sk, Dk! 1 O

k

ck~sk, Dk!L n,i
(k)~sk, Dk!, (5)

through Eqs. 2 and 3. As will be described in the following,
an analogous strategy can be used for the case of a baseline
offset that is constant in time and throughout the solution
column.

Direct fitting of the time-invariant and
radial-invariant noise

Due to imperfections in the data acquisition system (which
may be caused by thermal or mechanical instabilities), it
may be necessary to analyze a set of experimental data
allowing each of the scans to have a different, small, and
unknown radial-invariant (RI) noise componentbn. The
modeling with these constant radial baseline offsetsbn local
to each scan, in addition to the TI noisebi common to all
scans (but changing with radius), requires the solution of:

Min
sk,Dk,ck,bibn

O
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O
i
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ckL n,i
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(6)

It is obvious that the two perpendicular baseline contribu-
tions are linearly dependent. We can eliminate this problem
by constraining the TI noisebi to have a vanishing mean
value.

O
i

bi 5 0 (7)

Again, all the linear parametersbn, bi, and ck can be
algebraically optimized by solution of the linear equation
system obtained for vanishing partial derivatives. Setting
the partial derivatives with respect to the RI noisebn zero
and using Eq. 7 leads to
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Insertion of this result into Eq. 6 leads to a new problem

Min
sk,Dk,ck,bi
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which is of the same form as Eq. 1, and can be directly
solved for the remaining linear parametersbi andck using
the strategy outlined above. This, in turn, will allow the
application of Eq. 8 for the calculation of the RI noise
componentsbn(sk, Dk).

EXPERIMENTAL

Sedimentation velocity experiments were performed with a Beckman Op-
tima XL-I analytical ultracentrifuge equipped with an interference optical
system, and with a Beckman Optima XL-A analytical ultracentrifuge with
absorbance optics, respectively. Myoglobin and gamma globulin samples
(purchased from Sigma, St. Louis, MO) were redissolved in PBS, and epon
double-sector centerpieces equipped with sapphire windows were filled
with 350 ml of sample PBS, respectively. Using an An50-Ti rotor, the
samples were centrifuged at rotor speeds of 40,000 rpm at a temperature of
25°C. Two independent sedimentation velocity experiments were per-
formed, one in the XL-I with interference patterns acquired in time inter-
vals of 1 min, and one in the XL-A using higher loading concentrations,
with radial absorbance distributions scanned in intervals of 12 min.

Lamm equation analysis was performed usingsedfit, a sedimentation
velocity data analysis software that uses principles for numerical solutions
described in Schuck (1998) and Schuck et al. (1998). This Lamm equation
analysis software is available on request, or can be downloaded from
http://www.biochem.uthscsa.edu/auc/software, or from ftp://rasmb.bbri.
org/rasmb/spin. The Svedberg equation was employed for the calculation
of diffusion coefficients based on the buoyant molar mass and the sedi-
mentation coefficients of the solutes (Svedberg and Pedersen, 1940). To
account for the time needed for acceleration of the rotor, the time after start
of the centrifuge for each scan was calculated from thev2t entry of each
file. Exact location of the meniscus and the bottom of the solution column
were treated as fitting parameters to be optimized after manual graphical
predetermination. Integral fringe shifts were eliminated before data anal-
ysis. Problems due to the slightly varying radial increments in the acqui-
sition of the absorbance data were eliminated for the calculation of the
systematic noise components by expansion of each data set via interpola-
tion to a larger grid that includes the experimentally acquired points of all
scans. This produces a set of scans with a common radial grid; least-
squares analysis, however, was performed with the original data sets. All
error estimates include cross-correlation of all the parameters, and were
based on F-statistics (Bevington and Robinson, 1992; Press et al., 1992).
g(s*) analysis was performed with the programdcdt 30, kindly provided
by Dr. Walter Stafford, Boston Biomedical Research Institute.

RESULTS

Fig. 1 shows a set of experimental interference data ac-
quired during the sedimentation of myoglobin. It is obvious
that these data exhibit a time-invariant background signal
(or TI noise) with a magnitude that is comparable to the
signal contribution from the sedimentation of the macro-
molecule. The acquired 200 scans were decomposed into
the TI and RI noise components, and theoretical sedimen-
tation profiles based on the Lamm equation for an ideal
single species with the molar mass of myoglobin. The
calculation of the linear parameters, i.e., the orthogonal
noise components and the solute loading concentration, is
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computationally very inexpensive. Minimization with re-
spect to the sedimentation coefficient and the systematic
noise components leads to a well-determined best-fit sedi-
mentation coefficient ofsmyo 5 2.22 S. It is apparent in Fig.
1 that this model describes the data very well, with a rms
deviation of 0.0065 fringes. The error estimatesmyo for the
analysis of 200 scans is,,0.05 S; for the analysis of only
the 20 data sets shown in Fig. 1, the error estimatesmyo is
0.1 S. It is also apparent from the calculated RI noise
components, and from inspection of the experimental data
at the hinge point (at;7.05 cm), that this time-dependent
vertical displacement of the scans is significant.

For comparison, the same sample at a higher concentra-
tion was used in a sedimentation velocity experiment with
an absorbance optical scanner. Fig. 2 shows the absorbance
distributions obtained at a wavelength of 465 nm within

approximately the same experimental time interval. Model-
ing of these data using the calculated sedimentation coeffi-
cient from the previous interference experiment and per-
forming a least-squares optimization of the loading
absorbance and baseline offset leads to a rms deviation of
0.0127 OD (Fig. 2). This demonstrates that the direct anal-
ysis of the interference profiles solving for the unknown TI
and RI noise components is consistent with conventional
analysis of absorbance distributions. The best-fit sedimen-
tation coefficient of these absorbance data is 2.276 0.04 S,
with a final rmsd of 0.0125 OD. Within the precisionsmyo

imposed by instrumental error, both best-fit results from
the interference and from the absorbance experiments are
identical.

For the assessment of the correlation of the systematic
noise parameters with the sedimentation coefficient, we
allowed next for a TI noise component in the analysis of the
absorbance data. The value of this exercise is the ability to
compare a data analysis with and without consideration of
TI and RI noise components under conditions where both
approaches would be reasonable assumptions. It is notewor-
thy that under consideration of a TI noise component in the

FIGURE 1 Analysis of the interference data of the sedimentation myo-
globin. (A) Experimental fringe displacement profile. For clarity, only
every 10th scan of the total of 200 is shown. (B) Best-fit decomposition
into the calculated sedimentation profiles of a single ideal component
(constraining the molar mass to 17200 Da and a partial specific volume of
0.75 ml/g), and into the TI and RI noise components. The inset shows the
RI noise contributions as a function of time. The calculated TI noise is
shown below the calculated solutions of the Lamm equation. Best-fit
sedimentation coefficient from analysis of all 200 scans issmyo 5 2.22 S,
with a loading concentration of 0.237 fringes. (C) Residuals of the fit,
which has a rmsd of 0.0065 fringes in the complete analysis of the 200
scans.

FIGURE 2 Absorbance profiles of the sedimentation of myoglobin. The
absorbance distributions were scanned at 465 nm, in time intervals of 12
min for a total experimental time approximately identical to the data shown
in Fig. 1. (A) Experimental (circles) and best-fit distributions (lines)
constraining the sedimentation coefficient tosmyo 5 2.27 S, as obtained in
the analysis of the data shown in Fig. 1. (B) Residuals of the fit with a rmsd
of 0.0127 OD. (C) TI noise component, calculated via Eq. 2 on the basis
of the same model as (A) and (B). (D) Residuals of the extended model,
rmsd5 0.0088 OD.
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otherwise unchanged model of Fig. 2, the rms deviation to
the experimental data drops from a value of 0.0125 OD to
0.0088 OD (Fig. 2D). This indicates that small window
imperfections can contribute to a time-invariant absorbance
signal, which is apparent also in the distribution of the
residuals of the absorbance analysis (Fig. 2B). When TI
noise is considered, the best-fit sedimentation coefficient is
2.236 0.05 S. The only small increase of the error estimate
smyo from 0.04 S to 0.05 S suggests that the calculation of
the TI noise components does not substantially decrease the
precision of the calculated sedimentation coefficient. A
similar result is obtained if possible RI noise components
are taken into account (s 5 2.29 6 0.05 S). However, the
precision of the sedimentation coefficient decreases to a
valuesmyo of 0.08 S, near the 0.1 S observed in the analysis
of the interference data, if both TI and RI noise is consid-
ered in the model (s 5 2.246 0.08 S).

As an alternative treatment of the RI noise, we aligned (in
a least-squares sense) the interference patterns in the air-to-
air region above the solution column, where the interference
patterns are not influenced by any sedimentation processes
in the solution. Since in this region the RI noise components
are still visible, this treatment of the data should in principle
eliminate the need for taking RI noise into account in
modeling the data. The magnitude of the calculated RI noise
contributions and the air-to-air aligned jitter is shown in Fig.
3. While both methods coincide very well in the description
of the slow drifts of the baseline offset, it is apparent from
Fig. 3 that they differ in their high-frequency components,
which are of the same magnitude as the slower drifts. After
air-to-air alignment, the best-fit sedimentation coefficient
from the analysis of the 200 scans without further consid-
eration of RI noise was 2.23 S, with a rms deviation of
0.0080 fringes. This magnitude of the rms deviation is lower
than the value obtained in the analysis without any consid-
eration of RI noise (0.0111), but still significantly higher
then the rms error obtained with the algebraic calculation of
RI noise (0.0065). This suggests that the air-to-air alignment
is not completely effective. Furthermore, the statistical anal-
ysis of the air-to-air aligned subset of the 20 interference
data sets as shown in Fig. 1 leads to a considerably lower
s-value of 2.06 S, and an only slightly reduced error esti-
mate ofsmyo 5 0.09 S.

For comparison of the presented noise decomposition
with the results of a g(s*) analysis (Stafford, 1992), Fig. 4
shows the interference profiles of the sedimentation of
gamma globulin. This larger molecule produces sedimenta-
tion profiles that exhibit a distinct sedimentation boundary,
which includes a region of depletion near the meniscus as
well as a stable plateau at the bottom of the cell, thereby
allowing the application of the g(s*) method for data trans-
formation. The g(s*) data transformation displays a slightly
asymmetrical peak with a maximum at a smallers-value
(Fig. 4). This profile suggests the presence of a second
component. A Lamm analysis with a model including po-
tential aggregation of the gamma globulin into a dimer
yields s-values ofsg1 5 7.72 S andsg2 5 11.6 S, with a

fraction of 19% refractive index contribution from species
2. These values seem consistent with the g(s*) profiles, and
lead to a rmsd of 0.0072 fringes (which is significantly
lower than the rmsd of 0.0086 fringes obtained from a single
species model). This demonstrates consistency of the Lamm
analysis with the g(s*) results. These results are confirmed
by the analysis of the corresponding absorbance profiles
(data not shown). Air-to-air alignment of the full data set of
200 scans before analysis, in place of the algebraic RI noise
calculation, significantly increased the rms error to 0.0108,
which is even higher than the value of 0.0099 fringes
obtained without any offset correction. This finding corre-
lates with the relative large deviation in the high-frequency
part of the air-to-air and the calculated RI noise corrections
(Fig. 3 D).

Finally, we analyzed the sedimentation profiles of a mix-
ture of myoglobin and gamma globulin as detected with the
interference optics (Fig. 5). Without further fitting for the
sedimentation coefficients and using the results obtained
before (see above), unraveling the systematic noise compo-

FIGURE 3 Comparison of the calculated radial-invariant noise compo-
nent (lines) with the calculated jitter from least-squares air-to-air alignment
(symbols), after elimination of a constant offset. (A) Results from the
complete analysis of the myoglobin experiment, a subset of which is shown
in Fig. 1. (B) Difference of the results from both methods, with rms
deviation of 0.0052 fringes. (C) Results from the complete analysis an
experiment with gamma globulin, a subset of which is shown in Fig. 4. (D)
Difference of the results from both methods, with a rms deviation of
0.0084.
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nents led to a rmsd of 0.0051 fringes. This excellent de-
scription of the data further demonstrates the validity of this
treatment of the systematic noise components of interfer-
ence data.

The calculation of systematic TI noise components can be
applied also to the analysis of sedimentation equilibrium. If
scans are taken during the approach to equilibrium for the
identification of TI noise components, the sedimentation
equilibrium profiles can be corrected for the contribution of
the TI noise. This can be particularly useful for eliminating

the baseline noise from interference equilibrium data, as
well as eliminating the effects of imperfections of the win-
dow from absorbance equilibrium profiles. Fig. 6 shows the
approach to equilibrium for a protein in a monomer-dimer
equilibrium. Visual inspection of the approach to equilib-
rium data and of the equilibrium profiles clearly shows a
distinct time-invariant background profile. Modeling the
approach to equilibrium data was performed with a super-
position of Lamm equation solutions, with the strategy of
using a very large model by allowing for several compo-
nents with floating sedimentation and diffusion coefficient,
as well as a floating time offset for start of the simulated
sedimentation. Ideally, the model should allow for solutions
of the Lamm equation that approximately span the whole
function space of Lamm equation solutions. While this
analysis is necessarily ill-conditioned in terms of the ob-
tained s- and D-values that will not be interpreted, this
property is utilized to avoid the introduction of systematic

FIGURE 4 Analysis of the interference data of the sedimentation gamma
globulin. (A) Experimental fringe displacement profiles. For clarity, only
every 10th scan of the total of 200 is shown. (B) Best-fit decomposition
into the calculated sedimentation profiles of two noninteracting compo-
nents (constraining the molar masses toM1 5 160,000 Da andM2 5
320,000 Da, respectively, and the partial specific volumes to 0.734 ml/g).
The inset shows noise contributions as a function of time. The calculated
TI noise is shown below the calculated solutions of the Lamm equation.
Best-fit sedimentation coefficients from the analysis of all 200 scans aresg1

5 7.72 S andsg2 5 11.6 S, with a loading concentration of 0.178 fringes
and a 19% relative contribution from species 2 (the best single species fit
leads toswg 5 7.90 S at a rmsd of 0.0086). (C) Residuals of the fit, with
a rmsd of 0.0072 fringes in the complete analysis of the 200 scans. (D)
g(s*) transformation of the scans 40 to 70. The resulting weight average
sedimentation coefficient is 8.646 0.19 S, with a loading concentration of
0.17 fringes.

FIGURE 5 (A) Experimental sedimentation profiles of a mixture of
myoglobin and gamma globulin. Only every 10th scan of the total of 200
is shown. (B) Decomposition into the calculated sedimentation profiles of
myoglobin, gamma globulin, and a dimeric aggregate of gamma globulin,
with sedimentation coefficients predetermined as shown in Figs. 1 and 3,
and the systematic noise components. The inset shows the RI noise
contributions as a function of time. The calculated TI noise is shown below
the calculated solutions of the Lamm equation. (C) Residuals of the
decomposition, which leads to a rmsd of 0.0051 fringes in the complete
analysis of the 200 scans.
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error in the calculated TI background by using a wrong
model. Fitting with an ill-conditioned and very large Lamm
equation model effectively resembles a constrained smooth-
ing operation that allows the well-conditioned determina-
tion of the higher frequency parts of the systematic TI noise,
which is shown in Fig. 6A. It is noteworthy that the baseline
contribution exhibits features similar to the residuals ob-
tained from the analysis of the uncorrected sedimentation
equilibrium data (Fig. 6C). The analysis of the difference of
the sedimentation equilibrium profiles and the calculated TI
noise leads to residuals that are significantly smaller and
appear more random (Fig. 6D). Importantly, as a conse-
quence of the improved quality of the data, the error esti-
mate for the dimerization constant obtained was reduced by
a factor of 2.

DISCUSSION

We have presented an algebraic method for the consider-
ation of systematic time-invariant and radial-invariant noise
components in the least-squares analysis of analytical ultra-
centrifuge data from sedimentation velocity experiments.
The origin of some of these systematic noise components
are probably small thermal or mechanical instabilities, since
changes in the optical path length by only a few nanometers
can already lead to a significant fringe shift. This could
include thermal gradients in the heat sink and across the
condensing lens, as well as slow changes in the geometry of
the optical configuration, such as motions of the recording
plate, the lens, or the light source (T. M. Laue, personal
communication).

The described approach is very efficient and yields con-
sistently good results, as demonstrated by the exemplary
analyses of the sedimentation profiles of myoglobin (Fig. 1)
and gamma globulin (Fig. 4), which led to rms deviations of
only 0.0065 and 0.0072 fringes, respectively. That the cal-
culated noise components are realistic is indicated by the
analysis of the sedimentation profiles of a mixture of the
two proteins (Fig. 5). Decomposition of the data directly
into the Lamm equation solutions with predetermined co-
efficients and into the systematic noise components leads to
a rms deviation of only 0.0051 fringes. These results also
demonstrate that the presented analytical approach can fully
exploit the high sensitivity that can be experimentally
achieved with the interference optical system. Likewise,
that the calculated sedimentation coefficients are reliable is
demonstrated by the excellent agreement obtained for re-
sults from experiments performed on either optical system
(Fig. 2), as well as their consistency with the results from
dc/dt analysis (Fig. 4D).

Direct calculation of TI and RI noise through separation
of linear and nonlinear parameters is very versatile. Al-
though the examples shown were based on direct fitting of
numerical solutions of the Lamm equation, no reference is
made in the derivation to the nature of the functionsLn,i

(k),
and they can represent approximate analytical solutions of
the Lamm equation, or even sets of dependent sedimenta-
tion profiles of interacting systems. Therefore, the presented
method can be readily incorporated into any other method
for direct boundary fitting and applied to the analysis of
interference optical ultracentrifuge data. Obviously, the
least-squares calculation of RI noise components can incor-
porate, without any further difficulty, integral fringe shifts
that occasionally were found in a subset of the scans (and
removed for presentation purposes). Furthermore, while the
consideration of time-invariant noise components is crucial
for interference data, it can also be advantageous in the
analysis of absorbance data, where imperfections in the
windows can also lead to small time-invariant signal offsets,
as indicated in Fig. 2. It can be successfully employed for
the identification of the time-invariant background from the
approach to equilibrium data, which subsequently can be
used for the correction of sedimentation equilibrium pro-

FIGURE 6 (A) Absorbance profiles at 230 nm of the approach to equi-
librium of a protein undergoing a reversible monomer-dimer self-associa-
tion (circles). Best-fit Lamm equation model (solid lines) taking TI noise
contributions into account (solid line below with average zero). (B) Raw
sedimentation equilibrium data (circles), equilibrium data corrected for the
TI noise contribution shown above (triangles), and best-fit global sedimen-
tation equilibrium analysis of both data sets (solid lines). The corrected
sedimentation equilibrium profile is offset by 0.05 OD for clarity. The
residuals of these fits are shown in (C) and (D), respectively.
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files. Here, advantage is taken of the fact that low-speed
data have less specific hydrodynamic information (Schuck,
1998); this allows an analysis which is ill-conditioned with
respect to the Lamm equation parameters, but is well-
conditioned with respect to the high-frequency TI noise.
While this technique could be particularly useful in the
analysis of interference optical sedimentation equilibrium
experiments, its effectiveness has been demonstrated for
absorbance optical data in Fig. 6.

While fitting for the systematic noise components intro-
duces a very large number of unknowns, the results of the
error analyses described above indicate that they correlate
only weakly with the parameters governing the macromo-
lecular sedimentation, and therefore only slightly decrease
the precision of thes-value. In part, this appears to be due
to the intrinsic smoothness of the macromolecular sedimen-
tation profiles, which cannot describe and correlate with the
high spatial frequency of the TI noise. However, in partic-
ular for sedimentation profiles of small molecules that do
not exhibit distinct sedimentation boundaries, and in the
analysis of small datasets, some slight correlation can exist
between the sedimentation parameters and the low spatial
frequency part of the calculated TI noise. It should be
considered, though, that all acceptable models identified
with the presented method for the direct calculation of the
TI noise components obviously also provide an acceptable
description of the evolution of the time-difference of the
scans, which is the basis of current alternative methods of
interference data analysis. As a consequence, the possible
slight correlation of sedimentation parameters with low
spatial frequency parts of the TI noise is a problem that is
inherently introduced by local offsets in the experimental
data acquisition, and not by the strategy of the data analysis.

In the analysis of interference optical ultracentrifuge data,
other, more empirical methods for the elimination of TI and
RI measurement errors have been used. This includes the
subtraction of a separately measured background scan for
correcting TI noise contributions to the data. However,
while a simple subtraction would amplify the random noise
component, it can also be insufficient if depositions of oil
from the drive or moisture accumulate on the windows and
change the “time-invariant” background, as pointed out by
Stafford (1994). One method employed for the elimination
of radial-invariant offset is the alignment of the scans in the
air-to-air region above the solution column. When we com-
pared the results of this method with the calculated RI noise
components (Fig. 3), we found that both methods corre-
spond well in the description of slow drifts of this signal
offset. However, we found relatively large discrepancies in
the fluctuations of the offset on a short time scale (in the
order of minutes). These high-frequency contributions to
the RI noise are of the same magnitude as the slow drifts,
and are statistically significant. Given the low random noise
of the data (;0.005–0.007 fringes) and considering that the
offsets were calculated by air-to-air alignment on the basis
of 100 data points per scan, or even.1000 data points per
scan in the case of the algebraic calculation, respectively,

the statistical error of the calculated offsets is considerably
smaller than the observed magnitude of 0.005–0.01 fringes
of its high-frequency part. A possible explanation of this
error could be the presence of small mechanical vibrations
in the optical configuration. Air-to-air alignment was not
successful as a means of correction for this measurement
error. (Also, slight flexing of some isolated scans was
observed in the residuals plot, which could result in limited
effectiveness of the air-to-air alignment.) Unfortunately, the
need for consideration of RI noise in the data analysis leads
to a slight decrease of the statistical accuracy of the derived
s-values.

Compared with the time-derivative (dc/dt) analysis, used
in the g(s*) transformation, the method for direct analysis
presented in this paper has several advantages: first, it does
not require the differentiation of discrete and noisy data and
avoids the related well-known problems of error amplifica-
tion. Therefore, the direct analysis is statistically advanta-
geous. Second, it allows direct comparison of the model
with the raw data, and therefore inspection of the residuals
and the application of statistical tests of goodness-of-fit.
Although, according to Eq. 2, systematic “collective” devi-
ations will not show in the residuals but are transferred into
the calculated TI noise, systematic deviations of the model
from the experimental data in the individual scans can still
be observed and taken as a criterion for goodness-of-fit.
Third, it allows the calculation of RI noise components, as
opposed to their extrapolation from the air-to-air alignment.
The air-to-air alignment was found to describe well the slow
drifts of the offset, but not the higher-frequency compo-
nents, which we found to be of the same magnitude and
statistically highly significant (see above). Finally, the di-
rect analysis is more general and can be easily combined
with any Lamm equation solution, including for those small
molecules or for interacting systems.

An alternative strategy for the application of Lamm equa-
tion fitting for small molecules or interacting systems to
interference optical data is aDc-approach (Stafford, 1998;
J. S. Philo, personal communication). This is a modification
of the time-derivative method by fitting of finite time dif-
ferences of the Lamm equation solutions to the respective
time differences of the data. While the substitution of de-
rivatives with differences diminishes some of the problems
connected with error amplification in the calculation of
numerical derivatives, it inherits the drawbacks of thedc/dt
methods with respect to the inspection and analysis of the
goodness-of-fit, and with respect to the RI noise that is
time-dependent.

One more fundamental difference between the g(s*)
method and the Lamm equation approach is that the g(s*)
transformation is relatively model-independent. In this
property, it is related to the method of van Holde and
Weischet (Demeler et al., 1997; van Holde and Weischet,
1978), which allows the performance of rapid diagnostics of
the sample. These model-free approaches can be highly
useful for the identification of the number of species, asso-
ciative behavior, concentration dependence, and estimation
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of sedimentation coefficients, information which we believe
can be very valuable for the subsequent incorporation into a
detailed Lamm equation model. While thedc/dtapproach of
the g(s*) transformation is intrinsically insensitive to TI
noise, the application of the van Holde-Weischet analysis to
interference optical data would require model-free methods
for the elimination of TI and RI noise. Once a model has
been identified, however, the treatment of TI and RI noise,
as presented here, in combination with the recently de-
scribed methods for Lamm equation analysis allows for the
direct comparison of experimental and fitted data, and en-
ables the full exploitation of the high precision of interfer-
ence optical ultracentrifuge data.
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