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Abstract

We present an overview of the new web-based interface to the
UltraScan software and the UltraScan Laboratory Information
Management System (LIMS). We have developed a parallelized
module with supercomputer and UltraScan LIMS interface to
facilitate modeling of sedimentation velocity experiments with the 2-
dimensional spectrum analysis, the genetic algorithm analysis and
the Monte Carlo analysis. The interface brokers compute requests
from the UltraScan software to NSF's Teragrid and supercomputing
resources in the Texas Internet Grid for Research and Education
(TIGRE) and allows a remote user to submit analysis requests
through the UltraScan LIMS web interface. Analysis is processed
on multiple remote clusters, either locally, or on Teragrid or on
TIGRE, and the results are e-mailed back to the investigator for
iImport into UltraScan, which can display the model in a new finite
element model viewer program. This system dramatically reduces
compute time for high-resolution finite element analysis and is
available to the public.

Introduction

Ultrascan is a comprehensive data analysis toolkit for analytical
ultracentrifugation experiments. We have recently added several
new high-resolution data analysis methods to this software. The
unique innovation in these tools is their utilization of parallel
computing technology to accelerate time consuming computation.
In addition, we have developed a convenient web-based user
interface permitting access to remote supercomputers using
standard Internet browser software. Our parallel implementation of
algorithms on a supercomputing grid provides significant speedup
and permits analysis at levels of resolution which were not practical
in the past.

To accomplish this goal, we have utilized a grid infrastructure
developed by the Consortium for High Performance Computing
across Texas termed Texas Internet Grid for Research and
Education (TIGRE) and implemented it on a group of
supercomputer clusters at the University of Texas Health Science
Center at San Antonio. The grid infrastructure is linked to the
UltraScan Laboratory Information Management System (UltraScan
LIMS), and permits submission of data analysis jobs, tracking of the
job queue, and storing analysis results in an online database.
Navigation of job submission resources is accomplished through an
authenticated web-based interface. Intermediate and final results,
as well as manipulation of data stored in the LIMS is accomplished
with the UltraScan GUI program.

The algorithms that can be remotely executed on the Texas
supercomputing grid include the 2-dimensional Spectrum Analysis
(2DSA [BBDO06]), the Genetic Algorithm Analysis (GA [BD05]), and
the Monte Carlo Analysis (MC). Upon completion, the user will
receive an e-mail with the analysis results provided as an

Methodology

Our approach consists of performing a sequence of optimization
steps to arrive at a high-resolution description of the composition
represented by a sedimentation velocity experiment. Our fitting
procedures consist of finding the correct values for n, c;, s; and D;

during the m|n|m|zat|on process, which can be stated as follows
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where our model M represents a superposition of n ASTFEM Lamm
equation solutions L [CDO05], which are parameterized by the
sedimentation coefficient, s, and the frictional ratio k. b is the vector
of experimental data points over time t and radius r, and the
solution is given by the minimum of the I2-norm, which is solved
using the NNLS algorithm [LH74]. It reports non-negatively
constrained amplitudes c or zero for solutes that are not present in
the solution.

1. Initialization: The s-value range is initialized using the enhanced
van Holde — Weischet method [VW78, DV04], and the frictional ratio
Is typically set to values between 1 — 4 (Figure 1).

2. 2DSA, Tl noise elimination, and meniscus fitting: In the next
step, we perform a single-pass 2DSA analysis, and simultaneously
eliminate time invariant noise [SD99] and fit the meniscus position
by typically evaluating a 10-point meniscus grid and fitting the
position vs. x? to a 2" order polynomial (Figure 2).

3. 2DSA Monte Carlo Analysis: In the next step we perform a 100
iteration Monte Carlo analysis using the 2DSA method. This
approach amplifies the signal contained in the data and provides a
refined view of the parameter surface (Figure 3).

4. GA analysis and parsimonious regularization: In this step,
regularization is applied to eliminate false-positive solutes identified
in the 2DSA analysis. The GA search space is initialized with the
results from steps 2 or 3 (Figure 4).

5. GA Monte Carlo Analysis: Now a Monte Carlo analysis is
performed to obtain statistical descriptions of each fitted parameter.
This provides the necessary confidence intervals and facilitates
data interpretation (Figure 5).

6. Global Multi-Speed Analysis: A third GA Monte Carlo can be
used to further improve the confidence intervals of the data
obtained in step 5. By globally analyzing multiple speeds, the
signal-to-noise ratio is significantly improved and ultimate resolution
can be obtained (Figures 6 + 7).

We show a 5-component aggregating system, simulated with
realistic noise representing an aggregating system in an end-to-end
fashion with heterogeneity in shape and molecular weight. The
parameters for the simulated data are shown in Table 1. Simulation
was done for 60 and 20 krpm and 60 scans. Results are shown in
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Parallelization:

All parallelization in UltraScan is hand coded in C++ and uses the MPI
message passing library for communication between processors. The
submission and job distribution schematic is shown below:
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