
ABSTRACT
Analytical  Ultracentrifugation  (AUC)  is  an  experimental  technique 
used  to  determine  shape  and  molecular  weight  of  biological 
macromolecules and synthetic polymers in solution.  Finding the best 
fit  model  for  AUC experimental  data  is  a  difficult  inverse problem 
complicated by presence of noise.  Eliminating the effects of noise 
traditionally  involves  the  use  of  Tikhonov  or  Maximum-Entropy 
regularization.  These methods introduce a bias which smoothes the 
solution  and  thus  falsely  increases  number  of  molecules  in  the 
model.  We apply Genetic Algorithms to determine a parsimonious 
model with a goodness-of-fit approximating the level of noise present 
in the data.

ANALYTICAL ULTRACENTRIFUGATION
Analytical  Ultracentrifugation  (AUC)  is  a  powerful  technique  for 
studying macromolecular systems in solution [1,2,3].   This method 
can  be  used  to  follow  assembly  processes  of  multi-enzyme 
complexes,  characterize  recombinant  proteins,  asses  composition 
and characterize macromolecular mixtures that are heterogeneous in 
mass  and  shape.   The  techniques  addressed  in  the  poster  are 
currently  being  used  in  studies  focusing  on  macromolecular 
properties  of  biological  systems  involved  in  disease,  cancer  and 
aging, and on synthetic polymers, colloids and crystals of interest to 
material science and physics.

In  AUC  sedimentation  velocity 
experiments  a  sample  in  solution 
contained in a sector shaped cell is 
placed  in  the  ultracentrifuge.   The 
ultracentrifuge runs at speeds from 
2,000  to  60,000  RPM.   At  regular 
time  intervals,  the  instrument 
records  a  radial  concentration 
profile of the cell as shown in Figure 
1.   The  experiment  starts  with  a 
uniformly  distributed  sample.   As 
time  progresses,  the  sample 
sediments towards the bottom of the 
cell.   The data obtained from such 
an experiment is  typically shown as 
a  superposition  of  the  radial 
concentration  profiles  as  shown  in 
Figure 2.

The sample  may contain  several  solutes,  each a  different  type of 
molecule present at some concentration.   Each solute's behaviour in 
the  ultracentrifuge  is  described  by  a  PDE  known  as  the  Lamm 
equation [4].  The Lamm equation is parameterized by two values: s - 
the sedimentation coefficient and k - the frictional ratio.  s describes 
the rate of a solute's sedimentation and k is a measure of its shape 
as shown in Figure 3.

Superposition  of  Lamm equation  solutions  holds  for  multiple  non-
interacting solutes.  Given s, k,  speed, solvent viscosity and density, 
solute specific volume and temperature the molecular weight (MW) 
can be computed.  The simulated noisy experimental data in Figure 2 
contains three solutes with values from Table 1.

MW s coefficient frictional ratio k concentratio
n

1e4 1.3269e-13 1.3139 0.3

2e4 2.7675e-13 1 0.2

4e4 1.9214e-13 2.2865 0.4

Table 1 - Target values for a 3 solute system
It is straightforward to produce simulated experimental data from the 
table above, but it is much more difficult to determine the table values 
from the experimental data.  It is very difficult to determine even the 
number of different types of solutes present.  Knowing the number of 
solutes,  their  molecular  weights,  concentrations,  and  shapes  is  of 
primary importance to the researcher. Our techniques address these 
problems.

INVERSE PROBLEM
To determine the number of solutes and their s and k values present 
in experimental data in vector b consists of the following steps:

1. Build a set S of likely solute parameter (s,k) pairs.
2. Solve the Lamm equation for each element of S and place these 

solutions into the columns of a matrix A.
3. Use  a  nonnegatively  constrained  least-squares  (NNLS  [5]) 

method to find the best fit combination of columns of  A to the 

experimental data vector which solves min ||Ax-b||2.

This basic procedure results in a vector x which contains zero for the 
solute parameters which do not contribute to the best-fit solution and 
a positive value for contributing solutes.  The positive elements of  x 
contain the concentration of the respective solute.   We denote the 
number of positive elements of x by nz(x). The goodness-of-fit of Ax 
to b is measured by root mean square deviation (RMSD).  Step 3 can 
be modified to support Tikhonov or Maximum-Entropy regularization 
[6], which generally increases nz(x).

The above procedure to determine the best fit model for a given S is 
typical of two methods that have been used to solve this problem. 
The key difference is determining the set S of step 1.  In the C(s) [7] 
method, S consists of a one dimensional grid of s values with a fixed 
k  and  then  a  one  dimensional  line  search  is  performed  over  k 
minimizing  RMSD.   This  method  suffers  from  the  inability  to  find 
systems in which solutes exhibit heterogeneity in k.

In another method known as the two dimensional spectrum analysis 
(2DSA) [8],  S contains pairs from a two dimensional grid placed on 
the  (s,k) plane.   A  2DSA of  our  experimental  data  produced  the 
results  in  Figure  4 below  where  the  blue  dots  represent  solutes 
present in the best fit solution and the Xs represent the target solutes 
from Table 1. 

It can be seen from Figure 4 that along with the correct solutes, there 
are many false positives.  nz(x)=18 >> 3 for this analysis.  2DSA 
does a reasonable job of determining the correct molecular weights 
as is shown in  Figure 5 below where  Xs again represent the target 
values  from  Table  1.  2DSA  did  not  find  the  correct  solute 
concentrations.

GENETIC ALGORITHM METHOD
For our genetic algorithm method, each individual of our population is 
a set  S.  To compute the fitness of each individual, we compute the 
RMSD using same basic procedure as used in  C(s) and 2DSA.  In 
addition, we use  nz(x) as a penalty factor to impact the fitness of 
individuals  which  have  larger  numbers  of  solutes  in  their  best  fit 
model.  

Population initialization is critical to good performance.  2DSA is used 
to constrain population initialization and mutation.  For each solute 
identified by 2DSA we place buckets which constrain the mutation 
range.   This  is  shown  in  Figure  6 below  where  the  blue  dots 
represent  2DSA  solutions,  the  Xs  represent  target  solutions  (not 
representative of  Table 1 for this figure only), and the green boxes 
represent  the  bucket  constraints  for  associated  solutes  in  the 
individual. 

RESULTS
Starting from the 2DSA results of  Figure 4 we produce buckets as 
shown in green in Figure 7 below.

Then  we  ran  100  Monte  Carlo  iterations  of  the  GA  using 
parsimonious  regularization  with  produced  the  results  shown  in 
Figures 8 and 9.

Our  method  correctly  identified  the  concentrations  and  molecular 
weights providing a solution superior to 2DSA alone.  The difference 
is summarized in the following table:

Method No. of Parameters RMSD

2DSA 18 4.513e-3

GA 3.62 4.542e-3
We have presented a new method using a GA with regularization for 
parsimonious solutions in AUC.  The method correctly indicates the 
number of solute parameters present in the data with identical fitness 
to much less parsimonious solutions.  False positives are removed 
and the information in  the final  result  closely matches the original 
model  used  to  produce  the  experimental  data.   This  is  of  major 
importance to the researcher, as this is the first known method to do 
so and can  subsequently give the most accurate molecular weight 
and shape determinations.
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Figure 4 - 2DSA results
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Figure 6 - GA population individual
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Figure 8 - GA results
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Figure 9 - GA results - MW
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Figure 1 - The AUC cell

Figure 2 - Experimental data

Figure 3 - Frictional ratio - k
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Figure 5 - 2DSA results - MW
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Figure 7 - Buckets for GA


