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ABSTRACT A method for fitting experimental sedimentation velocity data to finite-element solutions of various models
based on the Lamm equation is presented. The method provides initial parameter estimates and guides the user in choosing
an appropriate model for the analysis by preprocessing the data with the G(s) method by van Holde and Weischet. For a
mixture of multiple solutes in a sample, the method returns the concentrations, the sedimentation (s) and diffusion coefficients
(D), and thus the molecular weights (MW) for all solutes, provided the partial specific volumes (v#) are known. For nonideal
samples displaying concentration-dependent solution behavior, concentration dependency parameters for s(s) and D(d) can
be determined. The finite-element solution of the Lamm equation used for this study provides a numerical solution to the
differential equation, and does not require empirically adjusted correction terms or any assumptions such as infinitely long
cells. Consequently, experimental data from samples that neither clear the meniscus nor exhibit clearly defined plateau
absorbances, as well as data from approach-to-equilibrium experiments, can be analyzed with this method with enhanced
accuracy when compared to other available methods. The nonlinear least-squares fitting process was accomplished by the
use of an adapted version of the “Doesn’t Use Derivatives” nonlinear least-squares fitting routine. The effectiveness of the
approach is illustrated with experimental data obtained from protein and DNA samples. Where applicable, results are
compared to methods utilizing analytical solutions of approximated Lamm equations.

INTRODUCTION

Sedimentation velocity data from the analytical ultracentri-
fuge are rich in information content. In principle, sedimen-
tation coefficients, diffusion coefficients, molecular
weights, equilibrium constants, and partial concentrations of
each solute in a multiple-component solution can be ob-
tained from velocity data. Currently available computer
programs for analyzing sedimentation velocity data ob-
tained from the Beckman XL-A analytical ultracentrifuge
rely on one of the following methods: 1) simple calcula-
tions, such as midpoint and second moment methods
(XLAVEL XL-A Data Analysis Software; Beckman Instru-
ments, Spinco Division, Palo Alto, CA); 2) graphical trans-
formations of experimental data (van Holde and Weischet,
1978; Demeler et al., 1997); 3) difference methods based on
time (Stafford, 1992) or radius (XLAVEL); or 4) nonlinear
least-squares fitting methods of approximate solutions to the
Lamm equation (Holladay, 1979, 1980; Philo, 1994). In the
latter category, several novel computer methods have been
developed recently that greatly improve on previous meth-
ods by introducing additional correction terms. Behlke and
Ristau (1997) developed a program that utilizes five differ-
ent model functions derived by Fujita (1962, 1975), includ-
ing the Faxe´n and the Archibald types, which are all ana-
lytical solutions to approximations of the Lamm equation

(Lamm, 1929). The latest version of the program SVED-
BERG (Philo, 1997) introduces two correction terms to the
solution of the approximated Lamm equation by Fujita and
MacCosham (1959) to reduce some of the limitations im-
posed by the assumptions. However, most currently avail-
able methods suffer in accuracy from the approximations or
assumptions in one or more of the following cases: 1)
experimental data points near the meniscus are included in
the analysis in cases where the sample has not cleared the
meniscus; 2) the sample does not produce a well-defined
plateau value for each scan; 3) in cases where low-molec-
ular-weight samples produce a concentration gradient that
rapidly approaches equilibrium distributions at the speeds
possible in the XL-A; or 4) experimental data from samples
exhibiting concentration dependency ins or D. With the
exception of the work of Behlke et al. (1997), the concen-
tration dependency ofs is not considered. The accuracy of
currently available direct fitting methods is generally tested
by fitting data that have been simulated with finite-element
solutions of the Lamm equation as developed by Claverie
and co-workers (Claverie et al., 1975; Claverie, 1976). The
fitting results are then compared to the known input param-
eters for the simulation. The reason for selecting finite-
element solutions as test functions is based on the fact that
these solutions of the Lamm equation are devoid of any
assumptions or correction terms. These numerical solutions
discretize the variables of the equation (in this case, time
and radius), and the resulting accuracy depends on the step
size used in the discretization of the variables. Hence, by
making the step size small, it is possible to obtain any
desired degree of accuracy supported by the amount of
memory available in the computer. Thus, although each of
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the currently available fitting methods has its own merits
and can yield accurate results under appropriate conditions,
the full spectrum of possible cases cannot currently be
accommodated. Examples that cannot easily be analyzed
include very low molecular weight molecules with large
diffusion coefficients ($1 3 1026 cm2/s), when data near
the cell boundary are included, or samples that exhibit
concentration dependency ins. Examples of the latter in-
clude larger DNA molecules as well as unfolded, charged,
or large proteins. In these cases, if concentration depen-
dency is not included in the model, the fitting results ob-
tained will be unreliable. Todd and Haschemeyer (1981)
presented a method for fitting simulated data to finite-
element solutions of various modified Lamm equations. In
this article we present an improved method that fits digitally
acquired data from the Beckman XL-A analytical ultracen-
trifuge directly to finite-element solutions by using the van
Holde–Weischet method for initial guesses and a nonlinear
least-squares approach that does not rely on derivatives to
improve calculation speed. Several experimental model sys-
tems have been analyzed, including samples that 1) exhibit
concentration dependence, 2) are composed of single or
multiple noninteracting solutes, and 3) approach sedimen-
tation equilibrium.

MATERIALS AND METHODS

Materials

All calculations were performed on a Pentium-type personal computer
configured with both the LINUX (v. 2.0.30) and MS-DOS/Windows op-
erating systems, and the UltraScan software package (version 2.97). Finite-
element fitting was accomplished with the SEDVFIN module of UltraScan.
A binary version of SEDVFIN for various UNIX platforms, including a
technical report describing the file format, has been made available at the
sedimentation data analysis software archives on the WWW server from
the University of Texas Health Science Center, Biochemistry Department
(http://bioc09.uthscsa.edu/.biochem/xla2.html). Chicken egg white ly-
sozyme and horse heart myoglobin were obtained from Sigma. DNA
samples used were derived from the pPOL-208–12 plasmid, which harbors
12 tandem repeats of the sea urchin 5S ribosomal RNA gene (Georgel et
al., 1993). DNA samples were obtained by digesting the plasmid with
EcoRI and purifying the resulting 16-bp fragments on a 1% agarose gel by
using Supelco GenElute agarose spin columns.

Analytical ultracentrifugation

DNA samples were centrifuged in 10 mM Tris-HCl/1 mM EDTA (pH 8.0).
Protein samples were centrifuged in 0.1 M phosphate-buffered saline at pH
6.5 (PBS). All experiments were performed using a Beckman XL-A
equipped with an AN-60 Ti rotor and absorbance optics. For runs above
42,000 rpm, aluminum centerpieces were used. In all other cases, epon/
charcoal centerpieces were used. Other details of run conditions are indi-
cated in the figure legends.

Models of the Lamm equation

The Lamm equation (Lamm, 1929), which describes the sedimentation
velocity behavior of a broad range of systems in the ultracentrifuge cell, is

given in its general form by
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with boundary and initial conditions:

J~rm, t! 5 J~rb, t! 5 0, 0# t # T; C~r, 0! 5 C0~r!
(2)

In this equation, the subscriptk refers to the solutek, C is the solute
concentration,J is the flux,t is time,T is the elapsed time at the end of the
experiment,r is the radius from the center of rotation, andrm # r # rb,
whererm andrb are the radii of the meniscus and the bottom of the cell.v
is the angular velocity, andsk and Dk are the sedimentation and the
diffusion coefficient of componentk.

In the general case, concentration-dependent nonideal solution behavior
has to be considered, andsk andDk are not constant, and are functions of
concentration. As described by Claverie (1976), this can be represented in
the form of Eqs. 3 and 4, wheresk and dk are constant, dimensionless
parameters that describe the variation ofsk and Dk from their value at
infinite dilution, sk0 andDk0:

sk 5 sk0~1 2 skCk! (3)

s 5 d 5 0 corresponds to the ideal case where the sedimentation and
diffusion coefficient are

Dk 5 Dk0~1 1 dkCk! (4)

independent ofC. The latter is generally true for small, globular macro-
molecules at low concentration. The models for concentration dependence
of s and D as shown in Eqs. 3 and 4 represent the simplest case where
interactions between different components are neglected.

Multiple noninteracting components were modeled by summing the
partial concentrations,Ck, of each solutek:

Ctotal 5 O
k51

i

Ck (5)

whereI is the total number of solutes in the system.
No analytical solution of Eq. 1 has yet been presented. Approximate

solutions have been developed (Faxe´n, 1929; Fujita and MacCosham,
1959) and have been employed to estimateD, s, and s/D (Philo, 1994,
1997; Behlke and Ristau, 1997; Holladay, 1979, 1980). A number of
numerical solutions have also been employed (for a discussion see Cox,
1965a–c; Dishon et al., 1969). For the studies presented here, the finite-
element method was chosen to obtain solutions to Eq. 1. A detailed
derivation of each finite-element solution has been described previously by
Claverie et al. (Claverie et al., 1975; Claverie, 1976). Detailed information
on the finite-element method and its application to solutions of partial
differential equations can be found in Zienkiewicz (1971).

Curve fitting of sedimentation data

The process of fitting experimental data consists of four distinct steps:
1. Initialization: In the initialization step, experimental data are first

analyzed by the van Holde–Weischet analysis method (van Holde and
Weischet, 1978) in order to determine the appropriate model and initial
parameter estimates for the finite element fit.

2. Simulation:By using the initial estimates and the model obtained in
step 1, experimental data are simulated from the appropriate finite-element
solution.

3. Minimization:During minimization, the DUD nonlinear least-squares
minimization algorithm (Ralston and Jennrich, 1978) is used to determine
a new set of parameter estimates. In an iterative process, steps 2 and 3 are
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repeated until the sum of the differences between experimental and simu-
lated data has been minimized.

4. Refinement:The fit is refined by repeating steps 2 and 3, with either
additional parameters being allowed to float, and/or by adjusting fitting
step sizes in DUD and discretization step sizes in the finite-element
solution until an optimal solution has been found. Each of these steps is
discussed in detail below.

Initialization

To perform nonlinear least-squares minimization on the experimental data,
the finite-element simulation needs to be initialized with estimates for each
parameter. As in most nonlinear least-squares minimizations, the closer the
initial parameter estimates are to the final result, the fewer iterations are
required to achieve convergence. Because functional evaluations of the
finite-element solution are computationally expensive, it is highly desirable
to be as close to the final solution as possible when starting the minimi-
zation. We have found that preprocessing the data with the van Holde–
Weischet analysis method (van Holde and Weischet, 1978) provides all of
the required estimates with sufficient accuracy to ensure rapid conver-
gence. In addition, this analysis is well suited to identifying the appropriate
model for the analysis for a wide range of experimental conditions—a very
important requirement. A detailed description of the diagnostics available
from the van Holde–Weischet method and how this method can used to
determine which model is appropriate can be found in Demeler et al.
(1997). The experimental data from the XL-A are analyzed with the
UltraScan software package (version 2.97) to determine meniscus position,
temperature, loading concentration, baseline absorbance, and time correc-
tions accounting for the acceleration period of the rotor. The UltraScan
software package is then used to create a van Holde–Weischet extrapola-
tion plot and an integral distribution plot. By visual inspection of the
extrapolation plot, the number of components in the system and the
required finite-element model are determined by the user. Parameter esti-
mates are obtained as follows. The number of converging lines in the van
Holde–Weischet plot are used to calculate partial concentrations of com-
ponents (see Fig. 5,C andD). Sedimentation coefficients are determined
by averaging the intercepts of respective components in the van Holde–
Weischet plot. Diffusion coefficients are estimated as described by equa-
tion 10 in van Holde et al. (1978). From the van Holde–Weischet analysis
we have

s*w 5 s2
2 D1/2

r0v
2 F21~1 2 2w!t21/2 (6)

wherew is the partial concentrationCr/Cp, s*w is the apparent sedimen-
tation coefficient at that concentration,s is the extrapolated sedimentation
coefficient,D is the diffusion coefficient,rm is the meniscus position,v is
the radial velocity,t is the time, andF is the error function. This is the
equation of a straight line, and solving forD, one obtains

D 5 F mr0v
2

2F21~1 2 2w!G
2

(7)

The slopes can be obtained from the van Holde–Weischet plot, and, by
using a numerical evaluation of the error functionF, diffusion coefficient
estimates can be calculated by averaging theD-value obtained for eachw
for each componentk. Because this method sometimes can result in
considerable error (see van Holde et al., 1978), an alternative method is
provided: if an estimate for the molecular weight of the sample is known
a priori, the initial value forDk can also be calculated from the molecular
weight of each componentk and the estimate ofsk according to the
Svedberg relationship:

Dk 5
skRT

Mk~1 2 v#kr!
(8)

whereMk is the molecular weight of componentk, R is the gas constant,T
is the temperature in Kelvin,r is the density of the buffer, andv#k is the
partial specific volume of the component. For the case of concentration
dependency, integral distribution plots are used to estimate a sedimentation
coefficient at the most dilute concentration (see Fig. 3). Initial estimates for
the valuyes ofsk are determined by the following relationship, suggested
by the model in Eq. 3:

s~k! 5 S1 2
s~C0,k!

s~C 5 0!D p ~C0,k!
21 (9)

Here the values for the sedimentation coefficient for each component are
read off the integral distribution plot. ThesC50 values are estimated by
extrapolating the distribution plot toC 5 0 (Demeler, 1992). The baseline
absorbance is estimated by averaging a few points in the depleted region
near the meniscus in the last scan of each experiment. Because no method
for the initialization of the concentration dependency of the diffusion
coefficient is available, the diffusion coefficient was always initialized at
zero and held constant until refinement, when it was initialized with a small
number (;1.0 3 1024) and allowed to float, if concentration dependence
seemed to be present and an improved fit could be obtained by including
the parameter.

Finally, because the finite-element solution incorporates the radial po-
sition at the bottom of the cell, speed-dependent rotor stretching must be
taken into account. Data measured by Beckman Instruments (D. McRorie,
Beckman Instruments, personal communications) for rotor stretching of the
AN 50 Ti (eight-position) and AN 60 Ti (four-position) rotors were fitted
to a fourth-degree polynomial (see Table 1). Because charcoal epon and
aluminum centerpieces are cut from different dies, a provision is made in
the software to enter the appropriate position at the bottom of the cell at
rest. The polynomial was incorporated into the finite-element solution to
automatically correct for rotor speed-dependent position changes at the
bottom of the cell.

Simulation

A brief discussion of the finite-element solution is included here; a more
complete description can be found in Claverie et al. (Claverie et al., 1975;
Claverie, 1976). Simulation is achieved by deriving the finite-element
solution of the system of equations given in Eq. 1. The finite-element
solution uses a variational formulation of Eq. 1, which is given by

E
V

­Ck

­t
z v z r z dr 1 E

V

­~rJk!

­r
z v z dr 5 E

V

fk z v z r z dr (10)

whereV is the [rm, rb] domain andv is a test function. By integrating by
parts, inserting the explicit expression ofJk (see Eq. 1), and using the linear
forms of sk andDk given in Eqs. 3 and 4, an equation similar to equation
10 of Claverie et al. (1975) is obtained. To discretize this equation inr, the
distance between meniscus and the bottom of the cell is divided intoN 1 1
equally spaced increments of lengthh 5 (rb 2 rm)/N, where N is the

TABLE 1 Coefficients for a fourth-degree polynomial
describing rotor stretching in the AN 60 Ti and AN 50 Ti
rotors for the XL-A

Y 5 A0 1 A1X 1 A2X
2 1 A3X

3 1 A4X
4 (Y in cm, X in rpm)

(valid range: 0–60,000 rpm)

A0 A1 A2 A3 A4

AN 60 Ti 3.128E-5 26.620E-9 7.264E-1226.152E-17 5.760E-22
SD 3.868E-6 8.973E-10 6.107E-14 1.532E-18 1.265E-23

AN 50 Ti 7.754E-5 21.546E-8 9.601E-1225.800E-17 6.948E-22
SD 2.671E-6 7.531E-10 6.139E-14 1.849E-18 1.836E-23
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number of elements in the space discretization. At this point it should be
mentioned that the data from the XL-A do not provide uniform radial
increments. We have observed that for a 0.001-cm acquisition setting in the
XL-A, radial increments ranging from 53 1024 cm to 53 1023 cm can
be obtained, with an average of;1.8 3 1023 cm step size. For conve-
nience in computation, we chose to use a constant value ofh of 1.03 1023

cm, which can be adjusted according to experimental needs (see Discus-
sion). For the purpose of residual calculation, we adjust the experimental
data by interpolating missing points and omitting points that have a smaller
radial increment than 0.001 cm. For the time discretization, the finite
difference technique was used: The time coordinatet is divided into
intervals of lengthDt. It was found that aDt value of 25 s provides
sufficient accuracy for initial minimizations, improving speed of compu-
tation. During refinement, theDt value is adjusted to 1 s in thefinal fit. This
leads to a system ofN 1 1 linear equations in matrix form for each solute
(explicitly shown in equation 5 of Claverie et al., 1975), which is given by

ACn11 5 Bn (11)

wheren is an integer index for the time discretization. The matrixA is
tridiagonal and can be solved with Gaussian elimination. For each solute,
the concentrationC is represented by a vectorCn, the elements of which
are the values of the concentrationC at radiirm, rm 1 h, . . . ,rb at timet0 1
nDt. Starting withn 5 0 and the initial conditions (C0 for each solute),
together with an estimate for the unknown parameterssk andDk, the vector
Cn11 is recursively calculated fromCn by solving Eq. 11. For the case of
strong concentration dependency, we found that inclusion of second-order
Taylor expansion terms in equations 1–3 and 16–18 of Claverie (1976) can
improve the fit. The equations for the concentration dependency ofs and
D, including the second-order terms, are given by

s< s0~1 2 sC 1 s2C2! (12)

D < D0~1 1 d1 C 1 d2C
2! (13)

Using the same notation as Claverie (1976), we can rewrite the matrix
equations of the finite-element solution as

~B 1 DtD0A1 2 Dts0v
2A2!Cn11

5 BCn 1 DtD0~UCU1 1 VCV1 1 WCW1!

1 DtD0~UCU2 1 VCV2 1 WCW2!

2 Dts0v
2A2CA1 2 Dts0v

2A2CA2

(14)

where

Ci
U1 5 ~dn!i ~Cn!i ~Cn!i11 Ci

U2 5 ~dn
2!i ~Cn!i

2 ~Cn!i11

Ci
V1 5 ~dn!i ~Cn!i ~Cn!1 Ci

V2 5 ~dn
2!i ~Cn!i

2 ~Cn!i

Ci
W1 5 ~dn!i11 ~Cn!i11 ~Cn!i11 Ci

W2 5 ~dn
2!i11 ~Cn!i11

2 ~Cn!i

Ci
A1 5 ~sn!i ~Cn!i ~Cn!i Ci

A2 5 ~sn
2!i ~Cn!i

2 ~Cn!i

(15)

Minimization

The nonlinear least-squares fitting method used in this study is a deriva-
tive-free algorithm based on the Gauss-Newton method, termed “Doesn’t
use Derivatives” (DUD) (Ralston and Jennrich, 1978). The general proce-
dure can be summarized as follows. LetP be a vector, the elements of
which are estimates of the unknown parameters, and let the experimental
data be expressed as a vectorY, the elements of which are the experimental
data values at various scan times and radial positions. A corresponding
vector of simulated data,Z(P), can be calculated by using the finite-
element solution to an appropriate model based on the Lamm equation (Eq.
1). The goal of the nonlinear least-square algorithm is to findP̂, the value

of P that minimizes the residual sum of squaresQ(P):

Q~P! 5 O
j51

1

~Yj 2 Zj~P!!2 (16)

where l is the length ofY, which corresponds to the total number of
experimental observations included in the fit. A number of algorithms for
finding P̂ are available, all of which must be initially supplied with
estimates of the unknown parameters. As stated earlier, the initial estimates
are supplied by the van Holde–Weischet analysis of the experimental data.
Global parameters of the run that can be adjusted (floated) during the fit
include baseline absorbance, meniscus position, the position at the bottom
of the cell, and a linear correction term proportional to the total absorbance:

Ci, j,corrected5 ~1 1 e! ~Ci, j 1 Cbaseline! (17)

where e is a small, dimensionless, positive or negative constant. This
correction is necessary in some cases where an apparent slope proportional
to the total absorbance is superimposed on the experimental data. We have
not been able to definitively identify the cause of the sloping, and do not
observe it in each experiment, but we suspect that this error is caused by
a fault in the optical system or by stray light. For each component, the
partial initial concentration, the sedimentation and diffusion coefficients,
and the concentration dependency parameters can be allowed to float.
Then the parameters are iteratively corrected until an optimal solution is
found, i.e.,P converges toP̂.

Most nonlinear minimization algorithms utilize steepest gradient de-
scend methods requiring either an analytical or a numerically calculated
partial derivative for each parameter (for a review, see Johnson and Faunt,
1992). In our case, such an approach poses a disadvantage, because 1) it is
difficult to provide an analytical derivative for this function and 2) because
it is computationally expensive to provide a numerically evaluated partial
derivative for each parameter for this function in each iteration. In the
general case, there will be 5k 1 4 parameters given by the vectorP, where
k is the number of solutes present in the system. Therefore, we chose to
implement the DUD algorithm (Ralston and Jennrich, 1978). Instead of
derivatives, this algorithm utilizes a derivative-free Gauss-Newton ap-
proach, providing substantial computational cost savings for this problem.
For the convenience of the reader, we summarize here thejth iteration of
the DUD algorithm for a system withp fitted parameters: letP1

j , P2
j , P3

j , . . . ,
Pp11

j be a set of estimated parameters for the solution computed in the
previous iteration (numbered by age, whereP1

j is the oldest). Approximate
the functionZ(P) by a linear functionQj(P), which is equal toZ(P) at p 1
1 points (Pi

j; i 5 1, . . . , p 1 1). Find Pnew
j , the point that minimizes the

distance betweenQj(P) andY. ReplaceP1
j with Pnew

j to obtain the updated
parameter set. Thep 1 1 initial starting values required by DUD are
generated from one user-suppliedPp11. For I 5 1, . . . ,p, Pi is computed
from Pp11 by displacing itsith component by a user-definable singularity
factor times the corresponding component ofPp11. The algorithm can then
be summarized as follows.

1. Generate anl 3 p matrix DF whoseith column is given by

DFi 5 Z~Pi! 2 Z~Pp11! (18)

where each vectorZ is a vector of sizel, generated from the simulation
algorithm, wherel stands for the total number of experimental observations.

2. Generate ap-vectora using

a 5 ~DFT DF!21~DF!T ~Y2 Z~Pp11!! (19)

3. Compute a new parameter vectorPnew:

Pnew 5 Pp11 1 DP a (20)

whereDP is thep 3 p matrix whoseith column is given by

DPi 5 Pi 2 Pp11 (21)
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4. The convergence criterion is given by

Q~Pnew! 2 Q~Pold! 5 0 (22)

5. If the convergence criterion is not met, update the set of starting values
P1, P2, . . . ,Pp11. Normally, the new estimatePnew replacesP1 (the oldest
number in the set), and the new starting set is formed by rearranging the set
P1, P2, . . . , Pp11, so thatP1 is the oldest.

6. For some data sets, convergence will not occur without using a
step-shortening procedure that modifiesPnew. We found the following
procedure to work quite well for the cases that have been examined to date:

Pnew 5 d p Pnew 1 ~1 2 d!Pp11 (23)

whered is the first member of the sequence:

di 5 2~21023!i i 5 1, 2, . . . , 5 (24)

Refinement

The process of refinement of a fit involves repeating the simulation and
minimization steps by allowing additional parameters to be floated that
may be required, and repeating the fit to converge on a better solution.
Moreover, step size and singularity factor adjustments often improve the
convergence and help to overcome local minima in the solution space.

RESULTS

Single ideal species, long-column
sedimentation velocity

The sedimentation pattern and overlaid finite-element fit by
a single ideal species model of horse heart myoglobin in a
long-column sedimentation velocity experiment are shown
in Fig. 1A. Residuals of the fit are shown in Fig. 1B. To be
able to compare results with those obtained from approxi-
mate solutions to the Lamm equation from SVEDBERG

(Philo, 1994), we restricted the data included in this fit by
the following criteria: 1) the meniscus was depleted; 2) no
data from the bottom of the cell were included; 3) a region
of well-defined plateau absorbance was available. Both
Fujita and Fujita-McCosham solutions provided results es-
sentially identical to those from the finite-element fit. The
calculated molecular weight for all three models agreed
with the calculated molecular weight derived from the
amino acid sequence to within 1% or less (shown in Ta-
ble 2).

Single ideal species, short column, and approach
to equilibrium

The sedimentation pattern of lysozyme and overlaid finite-
element fit of the data by a single ideal species model in a
short-column, approach-to-equilibrium sedimentation ve-
locity experiment is shown in Fig. 2A. In this case, neither
depletion of absorbance near the meniscus nor a stable
plateau absorbance can be obtained. This is caused by
significant diffusion and the relatively small sedimentation
coefficients common in small molecules. The solute will
almost immediately build a gradient through back-diffusion
into the cell, obliterating any stable plateau absorbance, and,
during later scans, a gradient approaching equilibrium is
created that neither depletes the meniscus nor provides any
discernible plateau concentration. As Behlke and Ristau
point out (Behlke and Ristau, 1997), such data will produce
skewed results because of errors introduced by the solution
near the cell boundary when solutions to approximated
Lamm equations are used. Therefore, comparisons to other
methods are not appropriate and were not attempted. The
residuals of the fit are shown in Fig. 2B. Sedimentation and
diffusion coefficients agree well with previously published
data (Behlke and Ristau, 1997). As shown in Fig. 2B, the
residuals increase in magnitude for data near the bottom of
the cell for the later scans. Those scans have an increased
absorbance near the bottom of the cell. This effect is caused
by the reduced signal-to-noise ratio at higher optical densi-
ties. Therefore, some of the data near the bottom of the cell
were excluded from the analysis. The results are summa-
rized in Table 2.

Two-component system and concentration
dependency of DNA

The sedimentation data and the finite-element fit of the
sedimentation profile of a 196-bp DNA fragment in low-salt
conditions are shown in Fig. 3A. Residuals of the fit are
shown in Fig. 3B. The van Holde–Weischet extrapolation
plot of the data (Fig. 3C) indicates the presence of a small
amount of other components. As can be deduced from the
analyzed boundary fraction,;12% of the material sedi-
ments slower than the major component, whereas a small
amount (;4%) sediments faster than the major component
(;84%; fractions are available from the integral distribution

FIGURE 1 Finite-element fit of a long column (;1.3 cm) sedimentation
velocity experiment of horse heart myoglobin in PBS buffer. Run condi-
tions were as follows: Rotor speed: 60 krpm; wavelength: 230 nm; tem-
perature: 20.2°C. (A) Velocity data and overlaid finite-element solution for
a single, ideal component system. Only scans that display a well-defined
plateau region and have cleared the meniscus are included in the fit. (B)
Residuals of finite-element fit inA. Residuals are shown with 0.03 absorp-
tion unit offsets, with the residuals for the first scan shown on the bottom
(0.0), and residuals of the last scan shown at the top of the plot (0.54).
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plot in Fig. 3D). (Because of experimental noise in the data,
5% of the total boundary near the baseline was excluded
from the analysis and was not included in the distribution
and extrapolation plots. This portion of the data would have
caused stray analysis results, if it had been included. The
partial concentration calculated for the minor component
near the baseline therefore must be increased by an addi-
tional 5%.) These minor components probably result from
small amounts of restriction enzyme or small-molecular-

weight digestion products that copurified during the isola-
tion of the major component, the DNA fragment. In addi-
tion, the data are further complicated by the presence of
concentration dependency in the major component. As in-
dicated by the crossing over of the extrapolation lines in the
van Holde–Weischet extrapolation plot (Fig. 3C) near they
axis at infinite time, the DNA fragment exhibits moderate
concentration dependency ins (see Demeler et al., 1997).
To account for the slower sedimenting species, a second
component was introduced in the fit. The fast sedimenting
impurities (4% of the total absorbance) where ignored in the
fit, resulting in a small systematic error in the fit (Fig. 3B).
The major component was fitted by allowing the parameters
for concentration dependency of boths andD to float. The
data for this fit are summarized in Table 3.

Partial boundary fitting

In cases where small amounts of minor components are
present (see previous example, shown in Fig. 3), it is pos-
sible to fit only the portion of the boundary corresponding to
the solute in question (Fig. 4). This allows the user to reduce
the number of floating parameters, which often improves
the convergence properties for the fit. Sedimentation veloc-
ity data and the overlaid finite-element fit are shown in Fig.
4 A, and the residuals of the fit are shown in Fig. 4B. To
obtain accurate results during partial boundary fitting, it is
essential that both the baseline and the partial concentration
of the solute in question are known, so that these parameters
can be fixed during the fit. Fortunately, this information is
directly available from the van Holde–Weischet analysis of
the data. As shown in Fig. 3C, the portion of the boundary
corresponding to the major solute comprises;86% of the
total concentration, with an offset of 12% from the baseline

TABLE 2 Results for velocity fits for ideal, single-component model

Horse heart
myoglobin

Horse heart
myoglobin

Horse heart
myoglobin

Lysozyme short
column

Program Finite-element Svedberg* Svedberg# Finite-element
Baseline OD 20.03258 20.04709 20.04663 0.02729
Ck (OD) 1.066 1.084 1.0829 0.62205
Slope corr. 0.0 0.0 0.0 0.0
Meniscus 6.038 cm 6.038 6.038 6.633
Bottom§ 7.1749 cm (A) N/A N/A 7.205 (E)
s20,W (s) 1.8823 10213 1.9133 10213 1.9073 10213 1.8493 10213

D20,W (cm2/s) 1.0513 1026 1.0813 1026 1.0803 1026 1.0423 1026

v# (cm3/g) 0.745¶ 0.745¶ 0.745¶ 0.703\

MW (calc.)** 1.70123 104 1.68583 104 1.67653 104 1.4503 104

MW (theor.)## 1.69563 104 1.69563 104 1.69563 104 1.4443 104

MW (D%) 0.33% 20.58% 21.13% 0.38%

NA, Not applicable.
* Fujita solution, one species model.
# Fujita-McCosham solution, one species model.
§ The bottom of the cell position listed refers to the rotor-stretching corrected value. (A), Aluminum centerpiece; (E), epon centerpieces.
¶ Partial specific volumes were calculated based on the partial amino acid composition according to Laue (1992).
\ Partial specific volume as reported in Sober (1968).
** Molecular weight based on fitted parameters according to Eq. 8.
## Molecular weight based on sequence (Swiss Protein Database).

FIGURE 2 Finite-element fit of a short column (;6 mm) approach-to-
equilibrium experiment of chicken eggwhite lysozyme in PBS buffer. Run
conditions were as follows: Rotor speed: 40 krpm; wavelength: 230 nm;
temperature: 20.1°C. (A) Velocity data and overlaid finite-element solution
for a single, ideal component system. Scans that have not cleared the
meniscus and show no well-defined plateau absorbance are included in the
fit. (B) Residuals of finite-element fit inA. Residuals are shown with 0.03
absorption unit offsets, with the residuals for the first scan shown on the
bottom (0.0), and residuals of the last scan shown at the top of the plot
(0.57). Note that residuals at the bottom of the cell reach into higher
absorbance ranges and therefore show increasing noise levels.
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(fractions are available from the integral distribution plot in
Fig. 3 D). If an initial scan has been prepared, the total
concentration is also known, and the baseline and plateau
concentrations can easily be calculated for the solute in

question. As shown in Fig. 4C, exclusion of the bottom
12% and the top 4% results in a single-component system,
exhibiting concentration dependence ins. The concentration
dependency parameter fors, s, can be estimated from the
integral distribution plot (Fig. 4D and Eq. 9), yielding a
value of 0.076, which is a good estimate of the final fitted
value of 0.045. Results are in good agreement with the
expected molecular weight and the results from the fit in
Fig. 3 (data are shown in Table 3).

Two-ideal-component system

Velocity data from a mixture of a 196-bp DNA fragment
and lysozyme were fitted to a two-component ideal model.
The velocity data and the overlaid finite-element fit are
shown in Fig. 5A, and the residuals of the fit are shown in
Fig. 5B. The van Holde–Weischet extrapolation plot clearly
shows the presence of two components (Fig. 5C), present
with a ratio of 43% (1.8S):57% (5.1S), as shown in the
integral distribution plot (Fig. 5D). Because of the reduced
concentration of the DNA and the higher ionic strength of
0.2 M NaCl (compared to the experiment in Figs. 3 and 4),
concentration dependence ofs is not apparent, and therefore
both components could be fitted to an ideal model (see also
the distribution plot in Fig. 5D). The increased ionic
strength may also help to reduce nonspecific interactions
between lysozyme and DNA by shielding the negative
charges on the DNA molecules with Na1 counterions. A fit
with the SVEDBERG program (Philo, 1997) did not con-
verge to produce a reasonable set of residuals for the Fujita
solution model; however, the Fujita-McCosham solution
produced residuals and a variance comparable to the finite-
element residuals (data not shown). The calculated molec-
ular weight of the DNA component is slightly higher than
expected from the sequence of the DNA. The calculation of

FIGURE 3 Finite-element fit of sedimentation velocity data of a 196-bp
DNA fragment from the 5S ribosomal RNA gene of sea urchin in TE
buffer. Run conditions were as follows: Rotor speed: 42 krpm; wavelength:
260 nm; temperature: 20.0°C. (A) Velocity data and overlaid finite-element
solution for a double, nonideal component system. (B) Residuals of finite-
element fit inA. Residuals are shown with 0.03 absorption unit offsets,
with the residuals for the first scan shown on the bottom (0.0), and
residuals of the last scan shown at the top of the plot (0.33). (C) van
Holde-Weischet extrapolation plot for data shown inA. Note that several
impurities are present; some are sedimenting faster, some slower than the
DNA. (D) Integral distribution plot ofC.

TABLE 3 Results for DNA velocity experiment, full and
partial boundary fits

Sample
Parameter

DNA
(Component 1)

Impurities
(Component 2)

DNA (partial
boundary)

Baseline OD 9.3153 1023 N/A 3.3023 1022

Ck (OD) 4.943 1021 2.373 1022 4.913 1021

Slope corr. 1.103 1023 N/A 0.0
Meniscus 5.991 cm N/A 5.991 cm
Bottom* 7.2079 cm N/A 7.2079 cm
s20,W (s) 5.3263 10213 8.6623 10214 5.2963 10213

D20,W (cm2/s) 2.3843 1027 6.5783 1027 2.4063 1027

sk 4.4713 1022 0.0 4.4703 1022

dk 1.2153 1023 0.0 7.7273 1024

v# (cm3/g) 0.55 Not known 0.55
MW (calc.)# 1.20703 105 Not known 1.18923 105

MW (theor.)§ 1.20743 105 Not known 1.20743 105

MW (D%) 20.033% N/A 21.5%

NA, Not applicable.
* The bottom of the cell position listed refers to the rotor-stretching
corrected value and epon centerpieces.
# Molecular weight based on fitted parameters according to Eq. 8.
§ Molecular weight based on nucleic acid sequence.
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the molecular weight of the lysozyme component resulted in
values significantly different from those expected from the
sequence-based value in fits by both models, with a differ-

ence of;43% for the Fujita-McCosham solution of SVED-
BERG (Philo, 1997), and a difference of;20% for the
finite-element solution. The difference in the molecular weight

FIGURE 4 Finite-element fit of partial sedimentation velocity data of a
196-bp DNA fragment from the 5S ribosomal RNA gene of sea urchin in
TE buffer. In this experiment only 86% of the boundary was fitted, with a
12% offset from the baseline. Run conditions were as follows: Rotor speed:
42 krpm; wavelength: 260 nm; temperature: 20.0°C. (A) Velocity data and
overlaid finite-element solution for a single, nonideal component system.
(B) Residuals of finite-element fit inA. Residuals are shown with 0.03
absorption unit offsets, with the residuals for the first scan shown on the
bottom (0.0), and residuals of the last scan shown at the top of the plot
(0.33). (C) van Holde-Weischet extrapolation plot of data shown inA. Data
display typical “cross-over,” indicative of concentration dependency inS.
(D) Integral distribution plot of van Holde-Weischet extrapolation data
shown inC.

FIGURE 5 Finite-element fit of sedimentation velocity data of a 196-bp
DNA fragment from the 5S ribosomal RNA gene of sea urchin mixed with
chicken egg white lysozyme in TE/0.2 M NaCl. Run conditions were as
follows: Rotor speed: 42 krpm; wavelength: 260 nm; temperature: 20.0°C.
(A) Velocity data and overlaid finite-element solution for a double, ideal
component system. (B) Residuals of finite-element fit inA. Residuals are
shown with 0.03 absorption unit offsets, with the residuals for the first scan
shown on the bottom (0.0), and residuals of the last scan shown at the top
of the plot (0.27). (C) van Holde-Weischet extrapolation plot of data shown
in A. Data clearly show the presence of two components, the “spread” of
the fan plot is proportional to the diffusion coefficient, indicating a larger
diffusion coefficient for the smaller sample. (D) Integral distribution plot of
data shown inA. Solid vertical lines indicate theS-value estimates from the
van Holde-Weischet analysis; the horizontal solid line indicates the con-
centration boundary between the two components.
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between the sequence-derived and the measured values for the
DNA component was around 10% for both models. From our
analysis it is not clear what factors contribute to the difference
between expected and calculated molecular weight for the
DNA component. The higher sedimentation coefficient ob-
served in this experiment when compared to the experiment
shown in Fig. 4 may be due to conformational changes in the
DNA when it is subjected to increased ionic strength. Because
the two methods produce similar deviations in the expected
DNA molecular weight, it is also possible that the result is a
reflection of the quality of the data and that the data do not
contain enough signal to allow accurate determination of either
s or D. Possible reasons for the relatively large discrepancy in
molecular weight between the expected and observed values
for lysozyme include the fact that the sedimentation signal for
this component was not very large. Because of the relatively
slow centrifugation speed, the smaller sample did not sediment
sufficiently fast to provide an adequate signal for a correct
sedimentation coefficient determination. As pointed out by
Demeler et al. (1997), faster centrifugation speeds generally
result in higher accuracy in sedimentation coefficient determi-
nation. In a two-component system, however, a compromise
must be made that allows for both components to be measured
simultaneously. If the components sediment with significantly
different rates, neither component can be measured at optimal
speed. Consequently, the sedimentation coefficients for ly-
sozyme derived from this experiment differ by;15% from
independent measurements (experiment shown in Fig. 2, and
others). The results are summarized in Table 4.

DISCUSSION

Technical and experimental advantages

We have looked at a variety of experimental model systems
and assessed the suitability of the finite-element analysis
method for sedimentation velocity data analysis. We have
found that accurate results can be obtained for a large range

of experimental systems. The results from finite-element
fits compare well to those obtained from other applicable
direct-fitting methods, and reproduce the expected molecu-
lar weights derived from sequence information equally well
or better than other methods. In situations where other
approximate solutions fail, the finite-element analysis can
prove useful by providing reliable information for systems
that exhibit concentration dependency ins or D or for
samples that are very small and can only be studied under
equilibrium or approach-to-equilibrium conditions. The van
Holde–Weischet method proved to be a useful preprocessor
of the data by assisting the user in the selection of a proper
model for the fit. Initial values provided by the van Holde–
Weischet method generally were close to the final, fitted
solutions, improving the speed of convergence substantially
for cases where initial values are not known a priori. The
use of partial boundaries for fitting allows the user to
effectively improve the confidence in a subcomponent of a
complex system by eliminating the requirement of simulta-
neously fitting multiple parameters and thus reducing the
overall confidence in all parameters obtained. In addition,
by eliminating additional parameters, the convergence prop-
erties of the nonlinear least-squares fit are improved. In
comparison to other derivative-based nonlinear least-
squares fitting algorithms, the DUD routine performs ade-
quately, significantly reducing computing time, because
fewer functional evaluations are required. It should also be
mentioned that the finite-element method is ideally suited
for data analysis of experimental data obtained from inter-
ference optics. The discretization of time shown in Eq. 11
requires that the solutions of the equation have to be calcu-
lated for closely spaced time intervals, regardless of the
number of scans included in the experimental data. The
interference optics hardware on the XL-A permits acquisi-
tion of scans closely spaced in time, thus allowing the user
to take direct advantage of all intermediate calculations
required by the finite-element simulation, and greatly en-

TABLE 4 Results for finite-element fits of DNA mixed with lysozyme

Sample Parameter
Finite-element two-component

fit (component 1)
Finite-element two-component

fit (component 2)
Svedberg two-component fit*

(component 1)
Svedberg two-component fit*

(component 2)

Baseline OD 21.4353 1023 N/A 22.8553 1022 N/A
Ck (OD) 0.4055 0.3257 0.4009 0.3564
Meniscus 6.019 cm N/A 6.019 cm N/A
Bottom# 7.208 cm N/A N/A N/A
s20,W (s) 5.473 10213 1.643 10213 5.483 10213 1.6203 10213

D20,W (cm2/s) 2.123 1027 1.1373 1026 2.253 1027 1.3163 1026

v# (cm3/g) 0.55 0.703§ 0.55 0.703§

MW (calc.)¶ 1.35693 105 1.20123 104 1.3173 105 1.0063 104

MW (theor.)\ 1.20743 105 1.4443 104 1.20743 105 1.4443 104

MW (D%) 11.0% 220.2% 9.1% 243.5%

NA, Not applicable.
* Svedberg Program (Philo, 1997) Fujita-McCosham solution, two-species model.
# The bottom of the cell position listed refers to the rotor-stretching corrected value and epon centerpieces.
§ Partial specific volume as reported by Sober (1968).
¶ Molecular weight based on fitted parameters according to Eq. 8.
\ Molecular weight based on nucleic acid sequence (component 1) and protein sequence (Swiss Protein Database) (component 2).
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hancing the usefulness of all additional data made available
through the interference optics.

Technical limitations of the method

A significant drawback of the finite-element method is the
large amount of computing time required for fitting exper-
imental data. Most of the CPU cycles required are used for
the functional evaluations. For all but the fastest personal
desktop computers equipped with a Unix operating system,
this analysis may not yet be feasible until faster processors
become available. We have done all fitting on a 200-MHz
Pentium Pro personal computer, equipped with the Linux/
Unix operating system, or on a DEC ALPHA. As a result,
statistical analysis of the results has not been feasible,
because of the large amount of computing time required for
such modeling. Instead of exhaustive searches of the error
domain to determine confidence intervals, we suggest the
possibility of a bootstrap method, as discussed by Efron
(1982). We plan to investigate this possibility in future
work. Although the DUD fitting routine requires fewer
functional evaluations for fitting then other least-squares
methods, the algorithm tends to show signs of instability
when a large number of parameters are floated simulta-
neously, or when the solution becomes locked in a local
minimum. In such a case it often helps to fix some of the
parameters and to repeat the fit in additional refinement
cycles. We have not explored other optimization algorithms
at this time, but as faster personal computers become avail-
able, it may be possible to use more robust routines based on
gradient descent, which utilize derivatives for nonlinear
least-squares optimization. For the case of very large or
asymmetrical molecules with small diffusion coefficients
(,1 3 1027 cm2/s), the finite-element solution tends to
become unstable near the bottom of the cell. This problem
is amplified by the second-order term of the concentration
dependency corrections, which include higher-order con-
centration terms. The error is caused by the almost discon-
tinuous concentration change at the bottom of the cell. In
such cases, an oscillation in the concentration gradient near
the bottom of the cell appears in the early scans. It is
intensified with each iteration int, and propagates backward
to the top of the cell. As shown in Fig. 6, a decrease in the
radial discretization step size can effectively overcome this
limitation. Because the smaller step size is not necessary for
calculation throughout the cell, it is possible to simulate the
bottom third of the cell with a step size small enough to
avoid the oscillation effect, while conserving computing
time (and memory) by using a larger radial step size for the
rest of the cell. For small-molecular-weight samples, the
method is applicable to any system that forms a boundary,
even for molecules so small that under experimental con-
ditions possible with the XL-A a velocity gradient cannot be
formed, and only equilibrium gradients can be obtained.
However, in such a case it is not practical to use the
finite-element analysis because of the excessive computing

time required to simulate the length of an equilibrium ex-
periment, and fitting of experimental data with conventional
methods is preferable. However, collecting scans before
equilibrium is reached and analyzing those scans is feasible,
because approach-to-equilibrium experiments are well
suited to finite-element analysis of any molecule. However,
in such a case the van Holde–Weischet method will not
provide reliable estimates, and initial parameter guesses
must be made by other means.

Extensions of the method

Although the examples presented here focus on the use of
the finite-element analysis for single and multiple (ideal or
nonideal) component systems, the method is easily ex-
tended to include models such as reversibly associating
monomer-polymer (Todd and Haschemeyer, 1981) and
isomerization equilibria for the computation of equilibrium
constants, or active enzyme sedimentation (Cohen and Cla-
verie, 1975). The finite-element method provides the con-
venient feature of allowing easy modification by simply
adding additional right-side terms in the discretized matrix
equation (Eq. 14). Hence any new external force term can
easily be included in the solution to model a great variety of
systems.

CONCLUSION

We have shown that the finite-element solution for various
models of the Lamm equation in conjunction with the van
Holde–Weischet analysis method and the DUD nonlinear
least-squares fitting algorithm provides the researcher with

FIGURE 6 Shown here are simulated data to demonstrate the effect of
the radial discretization step size on the stability of the finite-element
solution near the bottom of the cell for cases of small diffusion coefficients.
Simulation parameters were as follows: Model: single, ideal species with
S 5 11 3 10213 s, D 5 5 3 1028 cm2/s andC0 5 1 (relative concentra-
tion); rotor speed: 30 krpm;Dt: 1 s. For clarity, only data at the bottom of
the cell are shown. Open symbols refer to simulations with a step size of
7 3 1024 cm, filled symbols to a radial step size 4 times larger (2.83 1023

cm). Radial increments that are too large cause oscillations near the
transition region that propagate back into the cell with each iteration.
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a novel tool for analyzing sedimentation velocity data for
cases that have previously been inaccessible to methods that
directly fit sedimentation velocity boundaries. This method
can provide enhanced accuracy for cases where a concen-
tration dependency ofs or D is present, and where ap-
proach-to-equilibrium conditions are inevitable (i.e., small
molecules with very smalls values and large diffusion
coefficients). The finite-element solution to the Lamm
equation does not incorporate any assumptions or approxi-
mation terms, and hence provides a rigorous mathematical
model of the sedimentation process. For cases that do not
fall into these two categories, other direct fitting methods
(Philo, 1997; Behlke and Ristau, 1997) will provide equiv-
alent results and are preferable because of the convenience
of reduced computational requirements.

We thank Kensal E. van Holde and Jeffrey C. Hansen for helpful
discussions.
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