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ABSTRACT A method for fitting experimental sedimentation velocity data to finite-element solutions of various models
based on the Lamm equation is presented. The method provides initial parameter estimates and guides the user in choosing
an appropriate model for the analysis by preprocessing the data with the G(s) method by van Holde and Weischet. For a
mixture of multiple solutes in a sample, the method returns the concentrations, the sedimentation (s) and diffusion coefficients
(D), and thus the molecular weights (MW) for all solutes, provided the partial specific volumes (v) are known. For nonideal
samples displaying concentration-dependent solution behavior, concentration dependency parameters for s(o) and D(6) can
be determined. The finite-element solution of the Lamm equation used for this study provides a numerical solution to the
differential equation, and does not require empirically adjusted correction terms or any assumptions such as infinitely long
cells. Consequently, experimental data from samples that neither clear the meniscus nor exhibit clearly defined plateau
absorbances, as well as data from approach-to-equilibrium experiments, can be analyzed with this method with enhanced
accuracy when compared to other available methods. The nonlinear least-squares fitting process was accomplished by the
use of an adapted version of the “Doesn’t Use Derivatives” nonlinear least-squares fitting routine. The effectiveness of the
approach is illustrated with experimental data obtained from protein and DNA samples. Where applicable, results are
compared to methods utilizing analytical solutions of approximated Lamm equations.

INTRODUCTION

Sedimentation velocity data from the analytical ultracentri-(Lamm, 1929). The latest version of the program SVED-
fuge are rich in information content. In principle, sedimen-BERG (Philo, 1997) introduces two correction terms to the
tation coefficients, diffusion coefficients, molecular solution of the approximated Lamm equation by Fujita and
weights, equilibrium constants, and partial concentrations offacCosham (1959) to reduce some of the limitations im-
each solute in a multiple-component solution can be obposed by the assumptions. However, most currently avail-
tained from velocity data. Currently available computerable methods suffer in accuracy from the approximations or
programs for analyzing sedimentation velocity data ob-assumptions in one or more of the following cases: 1)
tained from the Beckman XL-A analytical ultracentrifuge experimental data points near the meniscus are included in
rely on one of the following methods: 1) simple calcula- the analysis in cases where the sample has not cleared the
tions, such as midpoint and second moment methodgeniscus; 2) the sample does not produce a well-defined
(XLAVEL XL-A Data Analysis Software; Beckman Instru- pjateau value for each scan; 3) in cases where low-molec-
ments, Spinco Division, Palo Alto, CA); 2) graphical trans- yjar-weight samples produce a concentration gradient that
formations of experimental data_ (van Holde and Weischetrapimy approaches equilibrium distributions at the speeds
1978; Demeler et al., 1997); 3) difference methods based ofsssiple in the XL-A; or 4) experimental data from samples
time (Stafford, 1992) or radius (XLAVEL); or 4) nonlinear exhibiting concentration dependency snor D. With the
Ieast—square_s fitting methods of approximat_e solutions to th%xception of the work of Behlke et al. (1997), the concen-
Lamm equation (Holladay, 1979, 1980; Philo, 1994). In they 4tion dependency afis not considered. The accuracy of
latter category, several novel computer methods have beey, ety available direct fiting methods is generally tested

developed rece_ntly thafc _greatly imprgve on previous methby fitting data that have been simulated with finite-element
ods by introducing additional correction terms. Behlke and

X . ) ... _solutions of the Lamm equation as developed by Claverie
Ristau (1997) developed a program that utilizes five differ- ) ; ) :
ent model functions derived by Fujita (1962, 1975). includ_and co-workers (Claverie et al., 1975; Claverie, 1976). The

ing the Faxe and the Archibald types, which are all ana- fitting results are then compared to the known input param-

viical solutions to approximations of the Lamm e uationeters for the simulation. The reason for selecting finite-
y PP q element solutions as test functions is based on the fact that

these solutions of the Lamm equation are devoid of any
, — — assumptions or correction terms. These numerical solutions
Received forpubllcatlon 9 June 199? and in final form 25 Septemb.er lgg?discretize the variables of the equation (in this case, time
Address reprmt requests to Dr. Borries ngeler, Department of B'OChe.ménd radius), and the resulting accuracy depends on the step
istry, The University of Texas Health Sciences Center at San Antonio, ! . L. .
7703 Floyd Curl Dr., San Antonio, TX 78284-7760. Tel.: 210-567-6592; SiZ€ Used in the discretization of the variables. Hence, by
Fax: 210-567-6595; E-mail: demeler@bioc02.uthscsa.edu. making the step size small, it is possible to obtain any
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the currently available fitting methods has its own meritsgiven in its general form by
and can yield accurate results under appropriate conditions, aC 1a(rd)
the full spectrum of possible cases cannot currently be Tk, = K
accommodated. Examples that cannot easily be analyzed 9t T dr
include very low molecular weight molecules with large
diffusion coefficients £1 X 10 ° cn/s), when data near
the cell boundary are included, or samples that exhibit)(r, t) = J(r,, t) = 0, 0=t=T, C(r, 0) = Cy(r)
concentration dependency 1 Examples of the latter in- (2)
Clu?e larger D.NA mOIehCUIes as We".fas unfOIdEd.’ ChargedIn this equation, the subscript refers to the soluték, C is the solute
or argg prOtems' In t.ese cases, | conpgntratlon deperz:bncentration,] is the flux,tis time, T is the elapsed time at the end of the
dency is not included in the model, the fitting results ob-experimenty is the radius from the center of rotation, ang = r = r,,
tained will be unreliable. Todd and Haschemeyer (1981)wherer,, andr, are the radii of the meniscus and the bottom of the cell.
presented a method for fitting simulated data to finite-iS the angular velocity, and, and Dy are the sedimentation and the
element solutions of various modified Lamm equations. In'ffusion coefficient of componerit . . .

. . . . .. In the general case, concentration-dependent nonideal solution behavior
h I hod that f Il
this a.rtlc e we present an improved method t "f‘t its digita Yhas to be considered, asgdandD, are not constant, and are functions of
acquired data from the Beckman XL-A analytical ultracen-concentration. As described by Claverie (1976), this can be represented in
trifuge directly to finite-element solutions by using the van the form of Egs. 3 and 4, where, and 5, are constant, dimensionless
Holde—Weischet method for initial guesses and a nonlingaparameters that describe the variationspfand D, from their value at
least-squares approach that does not rely on derivatives {g"te dilution, S andDyo:
improve calculation speed. Severgl experimental model Sys- S = So(1 — 0. Cy) €)
tems have been analyzed, including samples that 1) exhibit
concentration dependence, 2) are composed of single or = 8 =0 cqrresponds to the ideal case where the sedimentation and
multiple noninteracting solutes, and 3) approach sedimerfiffusion coefficient are

tation equilibrium. Dy = Dyo(1 + 8,C)) 4)

) 9Ci
=fi Ji = s@TCy — Dy ar 1)

with boundary and initial conditions:

independent ofC. The latter is generally true for small, globular macro-
molecules at low concentration. The models for concentration dependence
of sandD as shown in Egs. 3 and 4 represent the simplest case where
interactions between different components are neglected.

Multiple noninteracting components were modeled by summing the
All calculations were performed on a Pentium-type personal computepartial concentrations;,, of each solute:
configured with both the LINUX (v. 2.0.30) and MS-DOS/Windows op-
erating systems, and the UltraScan software package (version 2.97). Finite- i
element fitting was accomplished with the SEDVFIN module of UltraScan. CmtaI = E Cy (5)
A binary version of SEDVFIN for various UNIX platforms, including a k=1
technical report describing the file format, has been made available at the
sedimentation data analysis software archives on the WWW server fromyherel is the total number of solutes in the system.

the University of Texas Health Science Center, Biochemistry Department No analytical solution of Eq. 1 has yet been presented. Approximate
(http://bioc09.uthscsa.edu/.biochem/xla2.html). Chicken egg white ly-solutions have been developed (Faxd929; Fujita and MacCosham,
sozyme and horse heart myoglobin were obtained from Slgma DNA1959) and have been emp|oyed to estimAtes, and s/D (Ph||0’ 1994,
samples used were derived from the pPOL-208-12 plasmid, which harborggg7; Behlke and Ristau, 1997; Holladay, 1979, 1980). A number of
12 tandem repeats of the sea urchin 5S ribosomal RNA gene (Georgel @lumerical solutions have also been employed (for a discussion see Cox,
al., 1993). DNA samples were obtained by digesting the plasmid withj965a—c; Dishon et al., 1969). For the studies presented here, the finite-
EcoRI and purifying the resulting 16-bp fragments on a 1% agarose gel byelement method was chosen to obtain solutions to Eq. 1. A detailed
using Supelco GenElute agarose spin columns. derivation of each finite-element solution has been described previously by
Claverie et al. (Claverie et al., 1975; Claverie, 1976). Detailed information
on the finite-element method and its application to solutions of partial
differential equations can be found in Zienkiewicz (1971).

MATERIALS AND METHODS

Materials

Analytical ultracentrifugation

DNA samples were centrifuged in 10 mM Tris-HCI/1 mM EDTA (pH 8.0). . . .
Protein samples were centrifuged in 0.1 M phosphate-buffered saline at pfeurve fitting of sedimentation data

6.5 (PBS). All experiments were performed using a Beckman XL-A Th f fitti . tal dat ists of four distinct steps:
equipped with an AN-60 Ti rotor and absorbance optics. For runs above € process ot Titling experimenta’ data consists of four distinct Steps-.
1. Initialization: In the initialization step, experimental data are first

42,000 rpm, aluminum centerpieces were used. In all other cases, epon/

charcoal centerpieces were used. Other details of run conditions are indﬁna_lyzed by the van HoIde—Welschet analysis me_thod (van HOId? _a\_nd
cated in the figure legends. Weischet, 1978) in order to determine the appropriate model and initial

parameter estimates for the finite element fit.
2. Simulation:By using the initial estimates and the model obtained in
step 1, experimental data are simulated from the appropriate finite-element
Models of the Lamm equation solution.
3. Minimization: During minimization, the DUD nonlinear least-squares
The Lamm equation (Lamm, 1929), which describes the sedimentatiominimization algorithm (Ralston and Jennrich, 1978) is used to determine
velocity behavior of a broad range of systems in the ultracentrifuge cell, isa new set of parameter estimates. In an iterative process, steps 2 and 3 are
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repeated until the sum of the differences between experimental and simwhereM, is the molecular weight of componektR is the gas constan,
lated data has been minimized. is the temperature in Kelvim is the density of the buffer, ang, is the

4. RefinementThe fit is refined by repeating steps 2 and 3, with either partial specific volume of the component. For the case of concentration
additional parameters being allowed to float, and/or by adjusting fittingdependency, integral distribution plots are used to estimate a sedimentation
step sizes in DUD and discretization step sizes in the finite-elementoefficient at the most dilute concentration (see Fig. 3). Initial estimates for
solution until an optimal solution has been found. Each of these steps ithe valuyes ofr, are determined by the following relationship, suggested
discussed in detail below. by the model in Eq. 3:

S
o= (1 g 2 )« (Con ©)

Initialization

To perform nonlinear least-squares minimization on the experimental datd;ere the values for the sedimentation coefficient for each component are
the finite-element simulation needs to be initialized with estimates for eacf€ad off the integral distribution plot. Th&._, values are estimated by
parameter. As in most nonlinear least-squares minimizations, the closer tfxtrapolating the distribution plot t6 = 0 (Demeler, 1992). The baseline
initial parameter estimates are to the final result, the fewer iterations ar@bsorbance is estimated by averaging a few points in the depleted region
required to achieve convergence. Because functional evaluations of tnaear the meniscus in the last scan of each experiment. Because no method
finite-element solution are computationally expensive, it is highly desirablefor the initialization of the concentration dependency of the diffusion
to be as close to the final solution as possible when starting the minimi£oefficient is available, the diffusion coefficient was always initialized at
zation. We have found that preprocessing the data with the van HoldeZ€r0 and held constant until refinement, when it was initialized with a small
Weischet analysis method (van Holde and Weischet, 1978) provides all giumber ¢-1.0 X 10"%) and allowed to float, if concentration dependence
the required estimates with sufficient accuracy to ensure rapid converséemed to be present and an improved fit could be obtained by including
gence. In addition, this analysis is well suited to identifying the appropriatethe parameter.

model for the analysis for a wide range of experimental conditions—a very ~Finally, because the finite-element solution incorporates the radial po-
important requirement. A detailed description of the diagnostics availablesition at the bottom of the cell, speed-dependent rotor stretching must be
from the van Holde—Weischet method and how this method can used téken into account. Data measured by Beckman Instruments (D. McRorie,
determine which model is appropriate can be found in Demeler et alBeckman Instruments, personal communications) for rotor stretching of the
(1997). The experimental data from the XL-A are analyzed with the AN 50 Ti (eight-position) and AN 60 Ti (four-position) rotors were fitted
UltraScan software package (version 2.97) to determine meniscus positiof @ fourth-degree polynomial (see Table 1). Because charcoal epon and
temperature, loading concentration, baseline absorbance, and time corrediminum centerpieces are cut from different dies, a provision is made in
tions accounting for the acceleration period of the rotor. The UltraScarihe software to enter the appropriate position at the bottom of the cell at
software package is then used to create a van Holde—Weischet extrapol'éiiSt- The polynomial was incorporated into the finite-element solution to
tion plot and an integral distribution plot. By visual inspection of the automatically correct for rotor speed-dependent position changes at the
extrapolation plot, the number of components in the system and th&ottom of the cell.

required finite-element model are determined by the user. Parameter esti-

mates are obtained as follows. The number of converging lines in the van_, i

Holde—Weischet plot are used to calculate partial concentrations of com-S’mu’at’on

ponents (see Fig. % andD). Sedimentation coefficients are determined A brief discussion of the finite-element solution is included here; a more

by averaging the intercepts of respective components in the van HOIdeEomplete description can be found in Claverie et al. (Claverie et al., 1975;

V_Veisch_et plot. Diffusion coefficients are estimated as desc_ribed by equ_aCIaverie, 1976). Simulation is achieved by deriving the finite-element
tion 10 in van Holde et al. (1978). From the van Holde-Weischet analysis, | jtion of the system of equations given in Eq. 1. The finite-element

we have solution uses a variational formulation of Eqg. 1, which is given by

1/2

2
_ -1 ~12 aC a(rd
Si=s- rowzcb (1 - 2wt (6) a—tk-v-r-dr+ (ark)-v-dr= fy-ver-dr (10)

Q Q Q
wherew is the partial concentratio@,/C,,, s*w is the apparent sedimen-
tation coefficient at that concentratiomis the extrapolated sedimentation Where(Q is the [, r,] domain andv is a test function. By integrating by
coefficient,D is the diffusion coefficientr,, is the meniscus positiom is parts, inserting the explicit expressionkf(see Eq. 1), and using the linear
the radial velocity is the time, andD is the error function. This is the ~forms ofs andD, given in Egs. 3 and 4, an equation similar to equation

equation of a Straight |ine, and so|ving fm one obtains 10 of Claverie et al. (1975) is obtained. To discretize this equatimnthe
distance between meniscus and the bottom of the cell is dividedNirtdl
5 mr0w2 2 . equally spaced increments of length= (r, — r,)/N, whereN is the

= |26 11— 2w) )

TABLE 1 Coefficients for a fourth-degree polynomial
&escribing rotor stretching in the AN 60 Ti and AN 50 Ti
rotors for the XL-A

The slopes can be obtained from the van Holde—Weischet plot, and, b
using a numerical evaluation of the error functidndiffusion coefficient
estimates can be calculated by averagingDhealue obtained for eaclw

for each componenk. Because this method sometimes can result in Y= Ay + AX 4+ AXZ + AXE + AX* (Yin cm, X in rpm)
considerable error (see van Holde et al., 1978), an alternative method is (valid range: 0—60,000 rpm)

provided: if an estimate for the molecular weight of the sample is known
a priori, the initial value foD, can also be calculated from the molecular
weight of each componerk and the estimate o§, according to the AN 60 Ti 3.128E-5 —6.620E-9 7.264E-12—6.152E-17 5.760E-22
Svedberg relationship: SD 3.868E-6 8.973E-10 6.107E-14 1.532E-18 1.265E-23

Ao A A As A,

sRT AN 50 Ti 7.754E-5 —1.546E-8 9.601E-12—5.800E-17 6.948E-22
D=7 (8) SD 2.671E-6  7.531E-10 6.139E-14 1.849E-18 1.836E-23
M(1 — Vip)
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number of elements in the space discretization. At this point it should beof P that minimizes the residual sum of squat@g):

mentioned that the data from the XL-A do not provide uniform radial

increments. We have observed that for a 0.001-cm acquisition setting in the 1

XL-A, radial increments ranging from % 104 cm to 5x 103 c¢m can — 7 2

be obtained, with an average 6f1.8 X 10 2 cm step size. For conve- Q(P) E (Y' ZJ(P)) (16)
nience in computation, we chose to use a constant valb@bi.0 x 102
cm, which can be adjusted according to experimental needs (see Discuﬁ/‘herel is the length ofY, which corresponds to the total number of
sion). For the purpose of residual calculation, we adjust the experimentaé
data by interpolating missing points and omitting points that have a smalle
radial increment than 0.001 cm. For the time discretization, the finite
difference technique was used: The time coordinais divided into
intervals of lengthAt. It was found that aAt value of 25 s provides
sufficient accuracy for initial minimizations, improving speed of compu-
tation. During refinement, that value is adjusteditl s in thefinal fit. This
leads to a system df + 1 linear equations in matrix form for each solute

(explicitly shown in equation 5 of Claverie et al., 1975), which is given by C. o= (1 + 6) (C- -+ Coasel Q (17)
1,],correcte 1,] aselin:

j=1

xperimental observations included in the fit. A number of algorithms for
finding P are available, all of which must be initially supplied with
estimates of the unknown parameters. As stated earlier, the initial estimates
are supplied by the van Holde—Weischet analysis of the experimental data.
Global parameters of the run that can be adjusted (floated) during the fit
include baseline absorbance, meniscus position, the position at the bottom
of the cell, and a linear correction term proportional to the total absorbance:

AG.1 =B, (11) where € is a small, dimensionless, positive or negative constant. This
. . . . ) o - correction is necessary in some cases where an apparent slope proportional
wheren is an integer index for the time discretization. The matixs (5 the total absorbance is superimposed on the experimental data. We have
tridiagonal and can be solved with Gaussian elimination. For each solutg, : heen able to definitively identify the cause of the sloping, and do not
the concentratioit is represented by a vectdr, the elements of which  gyserve it in each experiment, but we suspect that this error is caused by
are the values of the concentratibmt radiir , rm + 1, . . ., at timet, + a fault in the optical system or by stray light. For each component, the
nat. Startlr_lg withn - 0 and the initial conditions for each solute), partial initial concentration, the sedimentation and diffusion coefficients,
together with an estimate for the unknown paramegeamdD,, the vector 54 the concentration dependency parametean be allowed to float.

C+1 s recursively calculated fror, by solving Eq. 11. For the case of rpen the parameters are iteratively corrected until an optimal solution is
strong concentration dependency, we found that inclusion of second-ordgpnq je. P converges td.

Taylor expansion terms in equations 1-3 and 1618 of Claverie (1976) can njost nonlinear minimization algorithms utilize steepest gradient de-

improve the fit. The equations for the concentration dependensyaofl  ceng methods requiring either an analytical or a numerically calculated

D, including the second-order terms, are given by partial derivative for each parameter (for a review, see Johnson and Faunt,

1992). In our case, such an approach poses a disadvantage, because 1) itis

difficult to provide an analytical derivative for this function and 2) because

it is computationally expensive to provide a numerically evaluated partial
D=~ Dy(1+ 8, C + 8,C? (13)  derivative for each parameter for this function in each iteration. In the

general case, there will bé&5- 4 parameters given by the vec®rwhere
Using the same notation as Claverie (1976), we can rewrite the matrix is the number of solutes present in the system. Therefore, we chose to

s~ (1 - oC + ¢°C?) (12)

equations of the finite-element solution as implement the DUD algorithm (Ralston and Jennrich, 1978). Instead of
derivatives, this algorithm utilizes a derivative-free Gauss-Newton ap-
(B + AtD,A! — Atsyw?A%)Cpay proach, providing substantial computational cost savings for this problem.
For the convenience of the reader, we summarize herghhteration of
= BC, + AtDy(UCY* + VC't + WC') the DUD algorithm for a system with fitted parameters: le®, P, P5, . . .,

(14) P{D+1 be a set of estimated parameters for the solution computed in the
previous iteration (numbered by age, whekes the oldest). Approximate
the functionZ(P) by a linear functior®(P), which is equal tZ(P) atp +

+ AtD4(UCY? + VC'2 + WC"?)

— Atsyw?A2CH — Ats,w?A2CH? 1 points P}; i = 1,...,p+ 1) Find PjneW the point that minimizes the
distance betwee® (P) andY. ReplaceP, with P}, to obtain the updated
where parameter set. The + 1 initial starting values required by DUD are
generated from one user-suppliég, ,. Forl = 1, ...,p, P; is computed
C’' = (8, (Co)i (Coisa C2 = (8% (C)2 (Coiss from P, , by displacing itsth component by a user-definable singularity
CiVl _ (an)i (Cn)i (Cn)l Civz _ (Sﬁ)i (Cn)i2 (Cn)i factor tlmes_the corresponding componenPpf ;. The algorithm can then
cwi — (8.)111 (C)ivr (o, o2 — (82)» (C )2 (C.), be summarized as foIIows._ ‘ o
W ni+1 \n/i+1 Vn/i+1 b n/i+1 2n i+1 \=ni 1. Generate ah X p matrix AF whoseith column is given by
Ci = (Un)i (Cn)i (Cn)i Ci = (O-Zn)l (Cn)i (Cn)i
AF; = Z(P) — Z(Py1) (18)

where each vectaZ is a vector of sizd, generated from the simulation
Minimization algorithm, wherd stands for the total number of experimental observations.
2. Generate @-vector « using
The nonlinear least-squares fitting method used in this study is a deriva-
tive-free algorithm based on the Gauss-Newton method, termed “Doesn't a = (AFTAF) " {AF)T (Y — Z(Py11) (29)
use Derivatives” (DUD) (Ralston and Jennrich, 1978). The general proce-
dure can be summarized as follows. [Rte a vector, the elements of 3. Compute a new parameter vecRy,,,;
which are estimates of the unknown parameters, and let the experimental
data be expressed as a vectothe elements of which are the experimental Prew = Pp+1 + AP« (20)
data values at various scan times and radial positions. A corresponding
vector of simulated dataZ(P), can be calculated by using the finite- WhereAP is thep X p matrix whoseith column is given by
element solution to an appropriate model based on the Lamm equation (Eq.
1). The goal of the nonlinear least-square algorithm is to Rnthe value AP =P, — Pp+l (21)
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4. The convergence criterion is given by (Philo, 1994), we restricted the data included in this fit by
P P y=0 the following criteria: 1) the meniscus was depleted; 2) no
Q( new) - Q( old) - . . .
data from the bottom of the cell were included; 3) a region
5. If the convergence criterion is not met, update the set of starting valuesf well-defined plateau absorbance was available. Both
Py, Pé’ . ';’pﬂ- NO”T(‘ja'r']y' the new ‘?St'ma@fnewfep'gcbeﬂ (the O'F’eth Fujita and Fujita-McCosham solutions provided results es-
number in the set), and the new starting set is formed by rearranging t es'§tentially identical to those from the finite-element fit. The
Py, Py, ..., Pyiq, SO thatP; is the oldest. )
6. For some data sets, convergence will not occur without using aca_1ICUIatEd molecular Welght for al_l three m0d6|5 agrEEd
step-shortening procedure that modifies,,, We found the following ~ With the calculated molecular weight derived from the
procedure to work quite well for the cases that have been examined to date&mino acid sequence to within 1% or less (shown in Ta-

(22)

le 2).
Pnew =d=* I:>new + (1 - d)Pp+1 (23) ble )
whered is the first member of the sequence:
4= —(—1079 i=1,2....5 (24) Single _|.dee_ll species, short column, and approach
to equilibrium
Refinement The sedimentation pattern of lysozyme and overlaid finite-

element fit of the data by a single ideal species model in a
The process of refinement of a fit involves repeating the simulation andgshort-column, approach-to-equilibrium sedimentation ve-
minimization steps by allowing additional parameters to be floated tha‘locity experiment is shown in Fig. &. In this case, neither
may be required, and repeating the fit to converge on a better solutiondepletion of absorbance near the meniscus nor a stable
Moreover, step size and singularity factor adjustments often improve the . .

convergence and help to overcome local minima in the solution space. plateau absorbance can be obtained. This is caused by
significant diffusion and the relatively small sedimentation

coefficients common in small molecules. The solute will

RESULTS

Single ideal species, long-column
sedimentation velocity

almost immediately build a gradient through back-diffusion
into the cell, obliterating any stable plateau absorbance, and,
during later scans, a gradient approaching equilibrium is

created that neither depletes the meniscus nor provides any
The sedimentation pattern and overlaid finite-element fit bygiscernible plateau concentration. As Behlke and Ristau
a single ideal species model of horse heart myoglobin in &gint out (Behlke and Ristau, 1997), such data will produce
long-column sedimentation velocity experiment are shownskewed results because of errors introduced by the solution
in Fig. 1A. Residuals of the fit are shown in FigBLTo be  near the cell boundary when solutions to approximated
able to compare results with those obtained from approxii amm equations are used. Therefore, comparisons to other
mate solutions to the Lamm equation from SVEDBERGmethods are not appropriate and were not attempted. The

residuals of the fit are shown in Fig.R Sedimentation and

diffusion coefficients agree well with previously published

' T T T data (Behlke and Ristau, 1997). As shown in Fig3,2he
£1.0 . residuals increase in magnitude for data near the bottom of
g the cell for the later scans. Those scans have an increased

a 05 EI absorbance near the bottom of the cell. This effect is caused
o ] ] by the reduced signal-to-noise ratio at higher optical densi-
0.0- : ‘ . : ties. Therefore, some of the data near the bottom of the cell
o were excluded from the analysis. The results are summa-
0.48 ~ - B rized in Table 2.
. 0.36 o
a e —
o 0.24 -~ ey
<0125 . = Two-component system and concentration
0.00 : : - dependency of DNA
62 64 66 68 70

Radius (cm)

The sedimentation data and the finite-element fit of the
sedimentation profile of a 196-bp DNA fragment in low-salt
conditions are shown in Fig. 8. Residuals of the fit are

FIGURE 1 Finite-element fit of a long column-(L.3 cm) sedimentation : . . .
velocity experiment of horse heart myoglobin in PBS buffer. Run condi-Shown in Fig. 3B. The van Holde-Weischet extrapolation

tions were as follows: Rotor speed: 60 krpm; wavelength: 230 nm; tem{lot of the data (Fig. &) indicates the presence of a small
perature: 20.2°C A) Velocity data and overlaid finite-element solution for gmount of other components. As can be deduced from the
a single, ideal component system. Only scans that display a WelI-define%naerd boundary fraction:12% of the material sedi-
plateau region and have cleared the meniscus are included in thB)fit. ( .

Residuals of finite-element fit iA. Residuals are shown with 0.03 absorp- ments slower than. the major component, W.hereas a small
tion unit offsets, with the residuals for the first scan shown on the bottom@Mount (~4%) sediments faster than the major component
(0.0), and residuals of the last scan shown at the top of the plot (0.54). (~84%; fractions are available from the integral distribution
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Horse heart Horse heart Horse heart Lysozyme short

myoglobin myoglobin myoglobin column
Program Finite-element Svedberg* Svedfferg Finite-element
Baseline OD —0.03258 —0.04709 —0.04663 0.02729
C, (OD) 1.066 1.084 1.0829 0.62205
Slope corr. 0.0 0.0 0.0 0.0
Meniscus 6.038 cm 6.038 6.038 6.633
Botton? 7.1749 cm (A) N/A N/A 7.205 (E)
Sro.w (8) 1.882x 107138 1.913x 10713 1.907x 10713 1.849x 10713
Dyo.w (CP/s) 1.051x 10°© 1.081x 10°® 1.080x 10°® 1.042x 10°°©
v (cm?/g) 0.7489 0.745 0.745 0.703
MW (calc.)** 1.7012x 10* 1.6858x 10* 1.6765x 10° 1.450% 10*
MW (theor.)* 1.6956x 10° 1.6956x 10* 1.6956x 10° 1.444% 10*
MW (A%) 0.33% —0.58% -1.13% 0.38%

NA, Not applicable.
* Fujita solution, one species model.
# Fujita-McCosham solution, one species model.

8 The bottom of the cell position listed refers to the rotor-stretching corrected value. (A), Aluminum centerpiece; (E), epon centerpieces.

T Partial specific volumes were calculated based on the partial amino acid composition according to Laue (1992).

I'Partial specific volume as reported in Sober (1968).
** Molecular weight based on fitted parameters according to Eq. 8.
## Molecular weight based on sequence (Swiss Protein Database).

plotin Fig. 3D). (Because of experimental noise in the data,weight digestion products that copurified during the isola-
5% of the total boundary near the baseline was excludetion of the major component, the DNA fragment. In addi-
from the analysis and was not included in the distributiontion, the data are further complicated by the presence of
and extrapolation plots. This portion of the data would haveconcentration dependency in the major component. As in-
caused stray analysis results, if it had been included. Thdicated by the crossing over of the extrapolation lines in the
partial concentration calculated for the minor componentvan Holde—Weischet extrapolation plot (FigC3near they
near the baseline therefore must be increased by an addixis at infinite time, the DNA fragment exhibits moderate
tional 5%.) These minor components probably result fromconcentration dependency s(see Demeler et al., 1997).

small amounts of restriction enzyme or small-molecular-To account for the slower sedimenting species, a second
component was introduced in the fit. The fast sedimenting
impurities (4% of the total absorbance) where ignored in the

15 fit, resulting in a small systematic error in the fit (FigB3.
E 1.2 The major component was fitted by allowing the parameters
g 0.9 for concentration dependency of battandD to float. The
O 0.6 data for this fit are summarized in Table 3.
© 03]
0.0 . o
0.48 Partial boundary fitting
g 0-36 In cases where small amounts of minor components are
O 0.24 present (see previous example, shown in Fig. 3), it is pos-
< 0.12 sible to fit only the portion of the boundary corresponding to
0.00 ] the solute in question (Fig. 4). This allows the user to reduce

T T

67 68 69 70 74 72 the number of floating parameters, which often improves
Radius (cm) the convergence properties for the fit. Sedimentation veloc-
ity data and the overlaid finite-element fit are shown in Fig.
FIGURE 2 Finite-element fit of a short columna-6 mm) approach-to- 4 A and the residuals of the fit are shown in FigB.4T0
equilibrium experiment of chicken eggwhite lysozyme in PBS buffer. Run . . . L o
conditions were as follows: Rotor speed: 40 krpm; wavelength: 230 nm;Obtam ,accurate results du”r?g partlal bound,ary ﬂttmg’ it I_S
temperature: 20.1°CAJ Velocity data and overlaid finite-element solution €Ssential that both the baseline and the partial concentration
for a single, ideal component system. Scans that have not cleared thef the solute in question are known, so that these parameters
meniscus and show no well-defined plateau absorbance are included in thggn be fixed during the fit. Fortunately, this information is
fit. (B) Residuals of finite-element fit il Residuals are shown with 0.03 directly available from the van Holde—Weischet analysis of

absorption unit offsets, with the residuals for the first scan shown on th . . .
bottom (0.0), and residuals of the last scan shown at the top of the plcfthe data. As shown in Fig. G, the portion of the boundary

(0.57). Note that residuals at the bottom of the cell reach into highercorresponding t'O the _major solute comprise86% of the'
absorbance ranges and therefore show increasing noise levels. total concentration, with an offset of 12% from the baseline
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TABLE 3 Results for DNA velocity experiment, full and
partial boundary fits
Sample DNA Impurities DNA (partial
Parameter (Component 1) (Component 2) boundary)
Baseline OD 9.31% 103 N/A 3.302x 102
C, (OD) 4.94x 107t 2.37x 1072 491x 107t
Slope corr. 1.1 103 N/A 0.0
Meniscus 5.991 cm N/A 5.991 cm
Bottom* 7.2079 cm N/A 7.2079 cm
Sro.w (8) 5.326x 10°*®  8.662x 10 ** 5.296x 1073
Dyo.w (CP/s) 2.384x 1077  6.578x 1077 2.406x 1077
O i v Oy 4.471x 102 0.0 4.470x 102
0.00 {-weM ey e S 1.215x 103 0.0 7.727x 1074
60 62 64 66 68 70 7.2 v (cm/g) 0.55 Not known 0.5
Radius (cm) MW (calc.) 1.2070x 10° Not known 1.1892x 10°
MW (theor.f  1.2074x 10° Not known 1.2074x 10°
MW (A%) —0.033% N/A —1.5%

NA, Not applicable.

*The bottom of the cell position listed refers to the rotor-stretching
corrected value and epon centerpieces.

#Molecular weight based on fitted parameters according to Eg. 8.

S Molecular weight based on nucleic acid sequence.

question. As shown in Fig. €, exclusion of the bottom
12% and the top 4% results in a single-component system,
exhibiting concentration dependencesiiihe concentration
dependency parameter fer o, can be estimated from the

0.0 6.0x10-3 1.2x10-2 1.8x102 2.4x10-2

o 0s integral distribution plot (Fig. 4O and Eq. 9), yielding a
Timel0.5) value of 0.076, which is a good estimate of the final fitted
T AN L NN B B e e value of 0.045. Results are in good agreement with the
1.0 D x ¢ expected molecular weight and the results from the fit in
_§ 0.8 ' ] Fig. 3 (data are shown in Table 3).
0.6 i )
% ] ] Two-ideal-component system
g 04 Velocity data from a mixture of a 196-bp DNA fragment
2 02 and lysozyme were fitted to a two-component ideal model.
e The velocity data and the overlaid finite-element fit are
0.0 "1 — shown in Fig. 5A, and the residuals of the fit are shown in
0 1 2 4 5 6 7 Fig. 5B. The van Holde—Weischet extrapolation plot clearly

shows the presence of two components (Fig)5present

oW with a ratio of 43% (1.8S):57% (5.1S), as shown in the
FIGURE 3 Finite-element fit of sedimentation velocity data of a 196-b integral distribution plot (Fig. ). Because of the reduced
DNA fragment from the 5S ribosomal RNA gene of){sea urchin in Tlg concentration of the DNA and the hlgher .Ionl.C strength of
buffer. Run conditions were as follows: Rotor speed: 42 krpm; wavelengthO-2 M NaCl (compared to the experiment in Figs. 3 and 4),
260 nm; temperature: 20.0°Qy)(Velocity data and overlaid finite-element - concentration dependencesit not apparent, and therefore
solution for a double, nonideal component syste®) Residuals of finite- ~ both components could be fitted to an ideal model (see also
eI_ement fit inA. Residuals a_re shown with 0.03 absorption unit offsets,the distribution p|0t in Fig. 5D). The increased ionic
Wlth the residuals for the first scan shown on the bottom (0.0), andStrength may also help to reduce nonspecific interactions
residuals of the last scan shown at the top of the plot (0.33).van o .
Holde-Weischet extrapolation plot for data shownfinNote that several ~D€tween lysozyme and DNA by shielding the negative
impurities are present; some are sedimenting faster, some slower than tgharges on the DNA molecules with Naounterions. A fit
DNA. (D) Integral distribution plot ofC. with the SVEDBERG program (Philo, 1997) did not con-

verge to produce a reasonable set of residuals for the Fujita

solution model; however, the Fujita-McCosham solution
(fractions are available from the integral distribution plot in produced residuals and a variance comparable to the finite-
Fig. 3 D). If an initial scan has been prepared, the totalelement residuals (data not shown). The calculated molec-
concentration is also known, and the baseline and plateaular weight of the DNA component is slightly higher than
concentrations can easily be calculated for the solute irxpected from the sequence of the DNA. The calculation of

1

3

S
2
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20w FIGURE 5 Finite-element fit of sedimentation velocity data of a 196-bp

DNA fragment from the 5S ribosomal RNA gene of sea urchin mixed with
FIGURE 4 Finite-element fit of partial sedimentation velocity data of a chicken egg white lysozyme in TE/0.2 M NaCl. Run conditions were as
196-bp DNA fragment from the 5S ribosomal RNA gene of sea urchin infollows: Rotor speed: 42 krpm; wavelength: 260 nm; temperature: 20.0°C.
TE buffer. In this experiment only 86% of the boundary was fitted, with a (A) Velocity data and overlaid finite-element solution for a double, ideal
12% offset from the baseline. Run conditions were as follows: Rotor speedsomponent systemBj Residuals of finite-element fit ir.. Residuals are
42 krpm; wavelength: 260 nm; temperature: 20.0%4).\(elocity data and  shown with 0.03 absorption unit offsets, with the residuals for the first scan
overlaid finite-element solution for a single, nonideal component systemshown on the bottom (0.0), and residuals of the last scan shown at the top
(B) Residuals of finite-element fit irh. Residuals are shown with 0.03  of the plot (0.27). €) van Holde-Weischet extrapolation plot of data shown
absorption unit offsets, with the residuals for the first scan shown on then A. Data clearly show the presence of two components, the “spread” of
bottom (0.0), and residuals of the last scan shown at the top of the plothe fan plot is proportional to the diffusion coefficient, indicating a larger
(0.33). €) van Holde-Weischet extrapolation plot of data showAiData  diffusion coefficient for the smaller sampl®) Integral distribution plot of
display typical “cross-over,” indicative of concentration dependenc® in  data shown irA. Solid vertical lines indicate th&value estimates from the
(D) Integral distribution plot of van Holde-Weischet extrapolation data van Holde-Weischet analysis; the horizontal solid line indicates the con-
shown inC. centration boundary between the two components.

the molecular weight of the lysozyme component resulted irence of~43% for the Fujita-McCosham solution of SVED-
values significantly different from those expected from theBERG (Philo, 1997), and a difference ef20% for the
sequence-based value in fits by both models, with a differfinite-element solution. The difference in the molecular weight
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between the sequence-derived and the measured values for tifeexperimental systems. The results from finite-element
DNA component was around 10% for both models. From ourfits compare well to those obtained from other applicable
analysis it is not clear what factors contribute to the differencedirect-fitting methods, and reproduce the expected molecu-
between expected and calculated molecular weight for théar weights derived from sequence information equally well
DNA component. The higher sedimentation coefficient ob-or better than other methods. In situations where other
served in this experiment when compared to the experimerdpproximate solutions fail, the finite-element analysis can
shown in Fig. 4 may be due to conformational changes in th@rove useful by providing reliable information for systems
DNA when it is subjected to increased ionic strength. Becausgéhat exhibit concentration dependency snor D or for

the two methods produce similar deviations in the expectedamples that are very small and can only be studied under
DNA molecular weight, it is also possible that the result is aequilibrium or approach-to-equilibrium conditions. The van
reflection of the quality of the data and that the data do noHolde—Weischet method proved to be a useful preprocessor
contain enough signal to allow accurate determination of eithepf the data by assisting the user in the selection of a proper
sor D. Possible reasons for the relatively large discrepancy inodel for the fit. Initial values provided by the van Holde—
molecular weight between the expected and observed valuggeischet method generally were close to the final, fitted
for lysozyme include the fact that the sedimentation signal folso|ytions, improving the speed of convergence substantially
this component was not very large. Because of the relativelyor cases where initial values are not known a priori. The
slow centrifugation speed, the smaller sample did not sedimenfse of partial boundaries for fitting allows the user to
sufficiently fast to provide an adequate signal for a correCigffectively improve the confidence in a subcomponent of a
sedimentation coefficient determination. As pointed out bycomplex system by eliminating the requirement of simulta-
Demeler et al. (1997), faster centrifugation speeds ge”era"Meously fitting multiple parameters and thus reducing the
result in higher accuracy in sedimentation coefficient determiyarail” confidence in all parameters obtained. In addition,

nation. In a two-component system, however, a Compromisg,, e|iminating additional parameters, the convergence prop-
must be made that allows for both components to be measur ties of the nonlinear least-squares fit are improved. In

simultaneously. If the components sediment with significantlyComparison to other derivative-based nonlinear least-
different rates, neither component can '?e measgrgd at Opﬂm@‘huares fitting algorithms, the DUD routine performs ade-
speed. Con'sequently, the sedlmentatpn coefficients for IyE1uately, significantly reducing computing time, because
sozyme derived from this expenme;nt differ byl 5.% from fewer functional evaluations are required. It should also be
independent measurements (experiment shown in Fig. 2, a entioned that the finite-element method is ideally suited

others). The results are summarized in Table 4. for data analysis of experimental data obtained from inter-
ference optics. The discretization of time shown in Eq. 11
DISCUSSION requires that the solutions of the equation have to be calcu-
lated for closely spaced time intervals, regardless of the
number of scans included in the experimental data. The
We have looked at a variety of experimental model system#nterference optics hardware on the XL-A permits acquisi-
and assessed the suitability of the finite-element analysiion of scans closely spaced in time, thus allowing the user
method for sedimentation velocity data analysis. We havéo take direct advantage of all intermediate calculations
found that accurate results can be obtained for a large rangequired by the finite-element simulation, and greatly en-

Technical and experimental advantages

TABLE 4 Results for finite-element fits of DNA mixed with lysozyme

Finite-element two-component Finite-element two-component Svedberg two-component fit* Svedberg two-component fit*

Sample Parameter fit (component 1) fit (component 2) (component 1) (component 2)
Baseline OD —1.435x 103 N/A —2.855% 102 N/A

C, (OD) 0.4055 0.3257 0.4009 0.3564
Meniscus 6.019 cm N/A 6.019 cm N/A
Bottont 7.208 cm N/A N/A N/A
Sro.w (8) 5.47x 1073 1.64x 1073 5.48x 1073 1.620x 10712
Do,w (cN/s) 2.12x 1077 1.137x 10°° 2.25%x 1077 1.316x 10°°®
v (cm®/g) 0.55 0.708 0.55 0.703
MW (calc.)! 1.3569x 10° 1.2012x 10° 1.317x 10° 1.006% 10*
MW (theor.) 1.2074% 10° 1.444x 10* 1.2074x 10° 1.444x 10*
MW (A%) 11.0% —20.2% 9.1% —43.5%

NA, Not applicable.

* Svedberg Program (Philo, 1997) Fujita-McCosham solution, two-species model.

#The bottom of the cell position listed refers to the rotor-stretching corrected value and epon centerpieces.

S Partial specific volume as reported by Sober (1968).

T Molecular weight based on fitted parameters according to Eq. 8.

I'Molecular weight based on nucleic acid sequence (component 1) and protein sequence (Swiss Protein Database) (component 2).
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hancing the usefulness of all additional data made available 300 . ;

through the interference optics. ‘ ~=-4---0.0028 cm, 12 min /
: ---=---0,0028 cm, 36 min [y
g 200 -—+-—0.0028 cm, 60 min i f
Technical limitations of the method ..E 1004 9:0007 cm, 12 min {
S —o—-0.0007 cm, 36 min f s
A significant drawback of the finite-element method is the 2 —o—0.0007 cm, 60 min | 2 %/
large amount of computing time required for fitting exper- 3 o_,Mwnﬁa%&_:qﬁég’;g;&kg_o_gé'Zaf |
imental data. Most of the CPU cycles required are used for 3§ RN
the functional evaluations. For all but the fastest personal ® \
desktop computers equipped with a Unix operating system, ~100- o i
this analysis may not yet be feasible until faster processors 1 . . ¥
become available. We have done all fitting on a 200-MHz 7.185 7.190 7.195 7.200
Pentium Pro personal computer, equipped with the Linux/ Radius (cm)

Unix operating system, or on a DEC ALPHA. As a result,

statistical analysis of the results has not been feasibl({ IGURE 6 Shown here are simulated data to demonsirate the effect of
he radial discretization step size on the stability of the finite-element

because of the large amount of computing time required fOE,olution near the bottom of the cell for cases of small diffusion coefficients.
such modeling. Instead of exhaustive searches of the err®imulation parameters were as follows: Model: single, ideal species with
domain to determine confidence intervals, we suggest thg= 11X 10" **s,D = 5 x 10 ® cnv/s andC, = 1 (relative concentra-
possiily of a bootsrap method, as discussed by Eftafe oy 2o F . LT e e o
(1982). We plan 1o mves“,ge,lte this .pOSSIblllt'y in future 7 x 10 *cm, filled syn?bolséaradial step size 4 times larger (>2.§B(§)’3
work. Although the DUD fitting routine requires fewer cm). Radial increments that are too large cause oscillations near the
functional evaluations for fitting then other least-squaresransition region that propagate back into the cell with each iteration.
methods, the algorithm tends to show signs of instability

when a large number of parameters are floated simulta-

neously, or when the solution becomes locked in a locafime required to simulate the length of an equilibrium ex-
minimum. In such a case it often helps to fix some of theperiment, and fitting of experimental data with conventional
parameters and to repeat the fit in additional refinementmethods is preferable. However, collecting scans before
cycles. We have not explored other optimization algorithmsequilibrium is reached and analyzing those scans is feasible,
at this time, but as faster personal computers become ava#ecause approach-to-equilibrium experiments are well
able, it may be possible to use more robust routines based éwlited to finite-element analysis of any molecule. However,
gradient descent, which utilize derivatives for nonlinearin such a case the van Holde—Weischet method will not
least-squares optimization. For the case of very large oprovide reliable estimates, and initial parameter guesses
asymmetrical molecules with small diffusion coefficients must be made by other means.

(<1 X 107 cné/s), the finite-element solution tends to

pecomg .unstable near the bottom of the cell. This prObI,enExtensions of the method

is amplified by the second-order term of the concentration

dependency corrections, which include higher-order conAlthough the examples presented here focus on the use of
centration terms. The error is caused by the almost discorthe finite-element analysis for single and multiple (ideal or
tinuous concentration change at the bottom of the cell. Imonideal) component systems, the method is easily ex-
such cases, an oscillation in the concentration gradient ne#@nded to include models such as reversibly associating
the bottom of the cell appears in the early scans. It isnonomer-polymer (Todd and Haschemeyer, 1981) and
intensified with each iteration ity and propagates backward isomerization equilibria for the computation of equilibrium
to the top of the cell. As shown in Fig. 6, a decrease in theconstants, or active enzyme sedimentation (Cohen and Cla-
radial discretization step size can effectively overcome thigrerie, 1975). The finite-element method provides the con-
limitation. Because the smaller step size is not necessary fotenient feature of allowing easy modification by simply
calculation throughout the cell, it is possible to simulate theadding additional right-side terms in the discretized matrix
bottom third of the cell with a step size small enough toequation (Eq. 14). Hence any new external force term can
avoid the oscillation effect, while conserving computing easily be included in the solution to model a great variety of
time (and memory) by using a larger radial step size for thesystems.

rest of the cell. For small-molecular-weight samples, the

method is applicable to any system that forms'a boundaryCONCLUSION

even for molecules so small that under experimental con-

ditions possible with the XL-A a velocity gradient cannot be We have shown that the finite-element solution for various
formed, and only equilibrium gradients can be obtainedmodels of the Lamm equation in conjunction with the van
However, in such a case it is not practical to use theHolde—Weischet analysis method and the DUD nonlinear
finite-element analysis because of the excessive computinigast-squares fitting algorithm provides the researcher with
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a novel tool for analyzing sedimentation velocity data forDishon, M., G. H. Weiss, and D. A. Yphantis. 1969. Numerical solutions
cases that have previously been inaccessible to methods thaff (e Lamm equation. V. Band centrifugatioAnn. N.Y. Acad. Sci.

directly fit sedimentation velocity boundaries. This method__ .~ roc
rectly it sedimentation velocity boundaries. IS Metho Efron, B. 1982. The Jackknife, the Bootstrap, and Other Resampling Plans.

can provide enhanced accuracy for cases where a concenRregional Conference Series in Applied Mathematics. SIAM, Philadel-
tration dependency o$ or D is present, and where ap- phia.
proach-to-equilibrium conditions are inevitable (i.e., smallGeorgel, P., B. Demeler, C. Terpening, M. R. Paule, and K. E. van Holde.

. . . 1993. Binding of the RNA polymerase | transcription complex to its
molecules with very smals values and large diffusion promoter can modify positioning of downstream nucleosomes assem-

coefficients). The finite-element solution to the Lamm bied in vitro.J. Biol. Chem268:1947-1954.

equation does not incorporate any assumptions or approxiFaxe, H. 1929. Wer eine Differentialgleichung aus der physikalischen
mation terms, and hence provides a rigorous mathematical Chemie.Ark. Mat. Astr. Fys21B:1-6.

model of the sedimentation process. For cases that do ngtjjita, H. 1962. Mathematical Theory of Sedimentation Analysis. Aca-

fall into th ¢ t . ther direct fitti thod demic Press, New York.
all Into these two categories, other direct fiting metho SFujita, H. 1975. Foundations of Ultracentrifugal Analysis. John Wiley &

(Philo, 1997; Behlke and Ristau, 1997) will provide equiv-  sons, Inc., New York.
alent results and are preferable because of the Conveniensﬁita, H., and V. J. MacCosham. 1959. Extension of sedimentation ve-

of reduced computational requirements. locity theory to molecules of intermediate sizels.Chem. Phys30:
291-298.
Holladay, L. A. 1979. An approximate solution to the Lamm equation.
We thank Kensal E. van Holde and Jeffrey C. Hansen for helpful Biophys. Chem10:187-190.
discussions. Holladay, L. A. 1980. Simultaneous rapid estimation of sedimentation
. . ) . fficient and molecul ighBi . :303-308.
This work was supported in part by National Institutes of Health grant coefficient and molecular weighBiophys. Chemil 303_308_
GM45916 Johnson, M. L., and L. M. Faunt. 1992. Parameter estimation by least-
' squares method#lethods EnzymoR10:1-37.

Lamm, O. 1929. Die Differentialgleichung der UltrazentrifugieruAgk.
REFERENCES Mat. Astron. FySZlBl—4
Laue, T. M., B. D. Shah, T. M. Ridgeway, and S. L. Pelletier. 1992.
Behlke, J., and O. Ristau. 1997. Molecular mass determination by sedi- Computer-aided interpretation of analytical sedimentation data for pro-
mentation velocity experiments and direct fitting of the concentration t€ins. In Analytical Ultracentrifugation in Biochemistry and Polymer
profiles. Biophys. J72:428—434. Science. S. E. Harding, A. J. Rowe, and J. C. Horton, editors. Royal
Claverie, J.-M. 1976. Sedimentation of generalized systems of interactin §OC|ety of Chemistry, (_3ambr|dge, En_gland_. 90__125' .
particles. Ill. Concentration dependent sedimentation and extension t&hilo, J. S. 1994. Measuring sedimentation, diffusion, molecular weight of
other transport method®&iopolymers.15:843—857. small molecules by direct fitting of sedimentation velocity concentration
Claverie, J.-M., H. Dreux, and R. Cohen 1975. Sedimentation of general- profiles. In Modern Analytical Ultracentrifugation. T. M. Schuster and
ized systems of interacting particles. |. Solutions of systems of complete T M. Laue, edltors: Birkhaser, Bo§ton. 15_6__170' . . )
Lamm equationsBiopolymers.14:1685-1700. Philo, J. S. 1997. An improved function for fitting sedimentation velocity
Cohen, R., and J. M. Claverie. 1975. Sedimentation of generalized systems 932 for low-molecular-weight soluteBiophys. J.72:435-444. _
of interacting particles. Il. Active enzyme centrifugation—theory and Ralston, M. L., and R. I. Jennrich. 1978. DUD, a derivative-free algorithm

extensions of its validity rang@iopolymers14:1701-1716. for nonlinear least square$echnometrics20:7-14.

Cox, D. J. 1965a. Computer simulation of sedimentation in the ultracenSober, H. 1968. The Handbook of Biochemistry and Molecular Biology.
trifuge. . Diffusion. Arch. Biochem. Biophyd.12:249—-258. Chemical Rubber Co., Cleveland, OH.

Cox, D. J. 1965b. Computer Simulation of sedimentation in the ultracenStafford, W. 1992. Boundary analysis in sedimentation transport
trifuge. 1l. Concentration independent sedimentatidnch. Biochem. experiments: a procedure for obtaining sedimentation coefficient distri-
Biophys.112:259-266. butions using the time derivative of the concentration proffeal.

Cox, D. J. 1965c. Computer simulation of sedimentation in the ultracen- Biochem.203:295-301.
trifuge. 1ll. Concentration dependent sedimentatidmch. Biochem.  Todd, G. P., and R. H. Haschemeyer. 1981. General solution to the inverse
Biophys.112:230-239. problem of the differential equation of the ultracentrifugkzoc. Natl.

Demeler, B. 1992. New methods for sedimentation and diffusion analysis Acad. Sci. USA78-11:6739-6743.
of macromolecular structure. Ph.D. thesis. Oregon State Universityyan Holde, K. E., and W. O. Weischet. 1978. Boundary analysis of
Corvallis, OR. sedimentation velocity experiments with monodisperse and paucidis-
Demeler, B., H. Saber, and J. Hansen. 1997. Identification and interpreta- Perse solutesBiopolymers 17:1387-1403.
tion of complexity in sedimentation velocity boundari&iophys. J. Zienkiewicz, O. C. 1971. The Finite Element Method in Engineering
72:397-407. Science. McGraw-Hill, London.



